
UNIVERSITÀ DEGLI STUDI DI BRESCIA 
Dipartimento di Ingegneria dell’Informazione 

Corso di Laurea Magistrale in Ingegneria Informatica 

 

 
 
 

Tesi di Laurea Magistrale�
PROBLEMI DI ROUTING A PIÙ VEICOLI 
IN PRESENZA DI VINCOLI TEMPORALI 

Time Constrained Vehicle Routing Problems 
 

 

Relatore:      
Prof.ssa Renata Mansini 
 
Correlatori:    
Prof. Jean-François Côté 
Ing. Daniele Manerba 

Laureanda: 
Alice Raffaele 

Matricola 81956 
 

 

 
 
 

Anno Accademico 2014/2015 



Ringraziamenti

C’è un tempo che non dovrebbe essere dato per scontato, quello che mi è stato
dedicato da molte persone durante questi anni di studi. Può essere stato solo
un attimo per scrivere un messaggio, oppure ore al telefono, o lunghe serate a
parlare: non importa quanto sia durato, è tempo che merita di essere ammirato.

Vorrei ringraziare innanzitutto la Prof.ssa Renata Mansini, relatrice di questo
lavoro di tesi, non solo per essere stata sempre gentile e disponibile, bensì soprat-
tutto per l’appoggio e la comprensione mostrati nei momenti più impegnativi.

Un ringraziamento doveroso al Prof. Jean-François Côté dell’Université Laval,
per aver reso possibile svolgere la tesi all’estero e per avere finanziato il progetto.

Sono stata fortunata, durante i mesi in Québec, di aver conosciuto alcune
persone che, grazie ai momenti passati insieme, mi hanno aiutato a superare il
tempo lontana. In particolare, merci beaucoup, Louise e Pierre, per come mi
avete accolta fin dal primo giorno, per gli scambi di parole in francese e italiano,
per i pezzetti di cioccolato fondente e i bicchierini di sciroppo d’acero.

Ho passato molto tempo con altri ragazzi come me, lontani da casa magari
per un periodo temporaneo o definitivamente.

Gracias, Roberto, per le lunghe chiacchierate, prima di persona e poi at-
traverso due monitor, però piacevoli allo stesso modo.

Per le mille gite ed esperienze organizzate assieme, e per i confronti su libri,
film e ricette, bedankt, Lieke.

Mamnoon, Maryam e Parnian, per aver fatto subito gruppo, per i consigli
su come affrontare tutto e per i plan b.

Per aver trascorso assieme le giornate in laboratorio, obrigado, Luciana.
Grazie, Fabio, per aver condiviso l’esperienza in Canada.
Per le nostre serate multilingue, per avermi parlato delle abitudini, dei piatti

e delle canzoni locali, merci, Marianic; mi hai fatto entrare di più in contatto
con la meravigliosa cultura del Québec.

Grazie, Riccardo, per l’enorme sostegno morale sia lì sia qui, per l’aiuto che
mi hai dato e per avermi ricordato che le impressioni non sempre sono corrette
ed è bello cambiare idea.

Nel periodo via da casa il supporto è stato grande anche da chi era in Italia.
Grazie infinite, Zia Gabri, Zio Primo e Simona, per avermi scritto sempre frasi
di incoraggiamento.

A Natalina e Sergio, per come mi fate sentire di essere parte di una seconda
famiglia; a voi, a Giada e Osvi, grazie di cuore per come mi avete incitato e di
come mi siete stati vicini.

Grazie alle pendolari del treno, in particolare a Ida e Desirée, con cui ho
spesso cominciato o terminato le mie giornate in questi anni.

I



Ringraziamenti

Grazie al supporto di Sandra, del Compare e della sua famiglia, di Luisa e
Antonello, di Antonietta e Antonio, di Lorenzo.

Agli amici di sempre, quelli per cui non conta quanto tempo passa ed è
sempre il momento di trovarsi una sera a bere qualcosa e a raccontarsi, oppure,
se non si riesce dal vivo, allora ci si mette d’accordo per una videochiamata.
Grazie specialmente a Paola, per i nostri giri in bici e per aver tentato in tutti
i modi di vedermi e sentirmi, riuscendoci alla fine. Grazie, Michele e Davide,
per le divertenti chiamate Skype in tre parti diverse del mondo. Grazie in
particolare, Sara, per i giorni che abbiamo trascorso assieme là e per aver fatto
da messaggera. E poi grazie a Ilaria, Simone, Ele, Emi, Aly, Fra, Gio, Maffi e
Ricky.

Grazie mille a Chiara e Rossana, compagne di tutti questi anni di università,
per aver vissuto assieme non solo lezioni, pause e progetti, ma altrettanti mo-
menti fuori da Via Branze, e inoltre grazie per aver condiviso le stesse speranze
e timori, dandoci supporto a vicenda.

Un grazie speciale ad Alba, luce mela dei miei occhi, perché essere lontane
ci ha soltanto fatto sentire più di quanto già facessimo prima, a partire dalle
lettere scritte a mano e arrivando ai messaggi audio: ricevere minuti e minuti
di messaggi in cui ascoltarti e poi risponderti era stupendo e lo è tutt’ora.

Alla mia famiglia, Mamma, Papà e Andrea, per avermi permesso di realiz-
zare tanti dei miei sogni, per aver sempre creduto in me e avermelo trasmesso,
attraverso abbracci, messaggi, sorprese e chiamate quotidiane; alla Nonna Al-
ceste, per le sue preziose parole e perché è quasi diventata tecnologica pur di
vedermi. Grazie di cuore, perché mi date tutto l’amore e la forza necessari, non
solo quando sono via ma ogni giorno.

Infine, grazie di cuore, William, perché non riesco a contare tutti i mo-
menti in cui mi hai supportato e incitato, in mille modi possibili, fin dall’inizio,
pur sapendo che sarebbe stata dura per entrambi essere distanti migliaia di
chilometri. Il tempo insieme a te, amore, ha un valore incommensurabile.

II





Contents

Sommario VII

Introduction X

List of Tables XIII

List of Figures XIV

List of Codes XV

1 Literature Review 1
1.1 The Vehicle Routing Problem . . . . . . . . . . . . . . . . . . . . 1
1.2 State of the art . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 The Time Window Assignment VRP . . . . . . . . . . . . 3
1.2.2 Time Slot Management in Attended Home Delivery . . . 4
1.2.3 Heuristics for the Time Slot Management . . . . . . . . . 4
1.2.4 The Consistent VRP . . . . . . . . . . . . . . . . . . . . . 5
1.2.5 An ALNS Heuristic for the PDPTW . . . . . . . . . . . . 6
1.2.6 Stochastic VRP . . . . . . . . . . . . . . . . . . . . . . . . 6

2 The SMTWAP 8
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Stochastic Programming . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.1 Two-stage recourse models . . . . . . . . . . . . . . . . . . 10
Standard formulation . . . . . . . . . . . . . . . . . . . . 11
Compact form . . . . . . . . . . . . . . . . . . . . . . . . 12
Deterministic equivalent . . . . . . . . . . . . . . . . . . . 12
Recourse classification and properties . . . . . . . . . . . 12
Nonanticipativity . . . . . . . . . . . . . . . . . . . . . . . 13
EVPI and VSS . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Problem definition . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4 Two-stage SMTWAP . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4.1 First stage . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
VNS . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Features of the ZonesVNS . . . . . . . . . . . . . . . . . . 17
Possible moves . . . . . . . . . . . . . . . . . . . . 17
Initial solution and Setup . . . . . . . . . . . . . . 18
The set of neighborhoods . . . . . . . . . . . . . . 18
Shaking . . . . . . . . . . . . . . . . . . . . . . . . 19

IV



CONTENTS

Local search . . . . . . . . . . . . . . . . . . . . . . 19
Move or not . . . . . . . . . . . . . . . . . . . . . . 19
Stopping criteria . . . . . . . . . . . . . . . . . . . 19

Pseudocode of the ZonesVNS . . . . . . . . . . . . . . . . 19
ZonesVNS Moves Summary . . . . . . . . . . . . . . . . . 20

2.4.2 Second stage . . . . . . . . . . . . . . . . . . . . . . . . . 21
The ALNS Framework . . . . . . . . . . . . . . . . . . . . 21

Roulette wheel selection principle . . . . . . . . . . 21
The set of sub-heuristics . . . . . . . . . . . . . . . 22
Stopping and acceptance criteria . . . . . . . . . . 22

Sub-heuristics for the SMTWAP . . . . . . . . . . . . . . 22
Remove Related Zones . . . . . . . . . . . . . . . . 23
Remove Smart . . . . . . . . . . . . . . . . . . . . 23

Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Pseudocode of ALNS . . . . . . . . . . . . . . . . . . . . . 24
Cost of the second stage . . . . . . . . . . . . . . . . . . . 24

Cost of a route . . . . . . . . . . . . . . . . . . . . 24
Cost of a scenario . . . . . . . . . . . . . . . . . . . 25
Total cost . . . . . . . . . . . . . . . . . . . . . . . 25

2.5 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.5.1 Main objects . . . . . . . . . . . . . . . . . . . . . . . . . 26

ScenarioSet . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Prob<Node, Driver> . . . . . . . . . . . . . . . . . . . . 27
NodeSMTWAP . . . . . . . . . . . . . . . . . . . . . . . . 28
DriverSMTWAP . . . . . . . . . . . . . . . . . . . . . . . 29
SolutionVRPTW . . . . . . . . . . . . . . . . . . . . . . . 30
ZoneList . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
ZoneSMTWAP . . . . . . . . . . . . . . . . . . . . . . . . 31
TimeWindowSet . . . . . . . . . . . . . . . . . . . . . . . 32
TimeWindowSMTWAP . . . . . . . . . . . . . . . . . . . 32
ScheduleSMTWAP . . . . . . . . . . . . . . . . . . . . . . 33

2.5.2 Loading phase . . . . . . . . . . . . . . . . . . . . . . . . 33
Loading the zones . . . . . . . . . . . . . . . . . . . . . . 33
Loading the set of scenarios . . . . . . . . . . . . . . . . . 34

2.5.3 Initial solution . . . . . . . . . . . . . . . . . . . . . . . . 35
2.5.4 First stage: management of the list of zones . . . . . . . . 37

ZonesVNS procedure . . . . . . . . . . . . . . . . . . . . . 38
Optimizing the schedule . . . . . . . . . . . . . . . 38
Setup Phase . . . . . . . . . . . . . . . . . . . . . . 40
Move to neighborhood . . . . . . . . . . . . . . . . 41
Shaking . . . . . . . . . . . . . . . . . . . . . . . . 42
Local search . . . . . . . . . . . . . . . . . . . . . . 43

2.5.5 Second stage: solving scenarios . . . . . . . . . . . . . . . 45
InitializeInternalFields . . . . . . . . . . . . . . . . 45
Optimize . . . . . . . . . . . . . . . . . . . . . . . . 46
Get the cost of second stage . . . . . . . . . . . . . 47
Other statistics . . . . . . . . . . . . . . . . . . . . 47

V



CONTENTS

3 Computational Results 48
3.1 Generation of instances . . . . . . . . . . . . . . . . . . . . . . . 48

3.1.1 An instance of a grid of zones . . . . . . . . . . . . . . . . 49
3.1.2 An instance of a set of scenarios . . . . . . . . . . . . . . 50
3.1.3 The solution files . . . . . . . . . . . . . . . . . . . . . . . 52

3.2 Computational Results . . . . . . . . . . . . . . . . . . . . . . . . 54
3.2.1 Improvement on the objective function . . . . . . . . . . . 54

Percentage improvements . . . . . . . . . . . . . . . . . . 54
Percentage improvement related to the number of zones . 58
Percentage improvement related to the number of customers 58

3.2.2 Computational times . . . . . . . . . . . . . . . . . . . . . 60
Computational times related to the number of zones . . . 65
The number of time windows and the initial solution . . . 65
Computational times related to the number of customers 66

3.2.3 Drivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Average number of drivers . . . . . . . . . . . . . . . . . . 68

Last Note 70

References 72

VI



Sommario

“One always has time enough,
if one will apply it well.”

Johann Wolfgang Von Goethe

Quanto vale un secondo, un minuto o un’ora? Quanto incide il tempo in
generale sull’organizzazione di tutti i giorni? É stato oggetto di dibattiti, studi
e teorie da secoli e continua attualmente a esserlo, ma la sua importanza non
è solo filosofica. Si può pensare al tempo pure dal punto di vista finanziario,
assegnandogli un valore monetario: nel settore economico dei trasporti esiste
una grandezza matematica chiamata Valore del Tempo, che rappresenta il costo
del tempo impiegato da un individuo a spostarsi da un luogo a un altro, cor-
rispondente a quanto egli sarebbe disposto a pagare per risparmiare tempo. A
ogni ora si può attribuire un prezzo, definito in base all’identità di chi si sposta
e al motivo per cui lo sta facendo.

Il tempo può essere visto come un indicatore e anche come una risorsa da
sfruttare, come succede nella logistica industriale e distributiva, dove l’obiettivo
consiste proprio nell’organizzare ogni fase del processo industriale in maniera
efficiente e nei tempi programmati. Oltre che nella produzione, il tempo è
fondamentale specialmente nell’ultima parte della catena, quella in cui merci
o servizi sono forniti ai consumatori finali. L’azienda cerca di soddisfare le
richieste della clientela e, contemporaneamente, di ottimizzare la consegna in
termini di costo, gestendola nel migliore dei modi e senza sprecare tempo o
denaro.

Il servizio di consegna può essere organizzato con un piano giornaliero, setti-
manale o mensile, a seconda delle esigenze, con l’obiettivo di impiegare al meglio
le risorse della società, quali per esempio fattorini e mezzi di trasporto. Tale
piano, per poter essere ottimale secondo i tempi, deve essere progettato avendo
a disposizione più informazioni possibili, come il numero di clienti, i loro recapiti
e l’entità degli ordini. Si consideri, per esempio, che due o tre clienti abbiano
richiesto una consegna e si supponga di sapere che essi vivono nella stessa via o
quartiere: conoscere tale dettaglio permette all’azienda di pianificare di servirli
tutti in un solo intervallo di tempo, evitando di tornare nello stesso luogo nuo-
vamente. Ciò può essere programmato solo se le informazioni sui clienti sono
disponibili a priori.

Dal lato del cliente, la consegna ovviamente avviene all’indirizzo da egli
specificato, che può spesso coincidere con quello di residenza, per esempio in
caso di ordini di elettrodomestici o comunque oggetti da consegnare e installare.

VII



Sommario

La spedizione a casa è sfruttata soprattutto nell’e-commerce e il numero di
acquisti online è in continua crescita negli ultimi anni. Il vantaggio principale
per il cliente è di non doversi spostare per ottenere il servizio richiesto, che si
verifica nel giorno voluto o comunque concordando la data di consegna con il
venditore o l’azienda.

L’orizzonte temporale per effettuare la consegna può essere gestito analiz-
zando pure il territorio, che potrebbe estendersi su una regione o una provincia
intera, oppure interessare solo una città, suddivisa in quartieri e strade. Uno
schema simile potrebbe essere sfruttato da un’azienda per organizzare le pro-
prie spedizioni: si potrebbe dividere la superficie interessata in zone più piccole,
decidendo di fornire il servizio nelle varie aree durante alcuni momenti partico-
lari della giornata, detti finestre temporali. In base al numero di clienti in una
determinata zona e ai loro ordini, si può effettuare una stima del numero di
volte in cui sarebbe necessario visitare la zona, coincidente con la quantità di
finestre temporali da assegnarle durante il periodo preso in esame. Calcolando
tale valore per tutte le zone, si potrebbe progettare, a mano o automaticamente
tramite un software apposito, una tabella di marcia dove, per ogni zona e per
tutti i suoi clienti, sarebbero riportati i giorni e gli orari in cui fornire il servizio
di consegna.

Ciò diventa molto più complicato quando non si hanno a disposizione infor-
mazioni certe sui clienti e sulle loro richieste, ma si conoscono solo dati statistici,
come i valori medi dell’entità degli ordini o del tempo impiegato per effettuare
il servizio; alcune volte persino le identità dei clienti, e di conseguenza i loro
indirizzi, non sono noti. Si possono prevedere alcuni casi possibili, ma senza
sapere mai con sicurezza assoluta quale di questi si realizzerà in concreto. Non
si potrà perciò progettare un piano perfetto, ma l’obiettivo diventerà quello di
trovarne uno in grado di adattarsi bene a ogni eventualità.

La questione trattata nello Stochastic Multi-period Time Windows Assign-
ment Problem (SMTWAP) è proprio la seguente: non essendo noti i clienti futuri
e i loro ordini, ma solo lo storico delle consegne di una società (e.g., attraverso
un database), il piano deve essere progettato prevedendo gli scenari realizzabili
in base alle informazioni del passato, tentando di soddisfare i clienti e mini-
mizzando i costi o i tempi totali di consegna; il tutto vedendo il tempo come
il vincolo principale da rispettare e ottimizzare, tramite le finestre temporali
assegnate alle zone del territorio considerato.

Il problema di servire un insieme di clienti rispettando dei vincoli temporali
e avendo informazioni stocastiche è già stato discusso in letteratura, ma mai
considerando contemporaneamente la gestione di zone geografiche e il problema
di assegnamento delle finestre temporali. Spesso l’insieme di finestre temporali
è noto per ipotesi, ed esse non si possono modificare ma soltanto assegnare a
ogni cliente; invece l’approccio risolutivo dello SMTWAP si concentra proprio
sulla loro manipolazione degli intervalli di tempo e su quella delle zone. Le
finestre temporali non sono date ma devono essere definite; non rimangono fisse
e costanti durante la risoluzione del problema ma vengono modificate (e.g.,
spostate in giorni diversi) per provare nuove combinazioni, in modo che diversi
piani possano essere testati e valutati. Potrebbe accadere che uno specifico
intervallo di tempo non sia adatto per un’area, ma sarebbe ottimale per un’altra.
In alcuni casi, è solo il giorno in cui è effettuato il servizio a essere inadeguato
e sarebbe meglio provare un periodo diverso. Infine, potrebbe verificarsi la
circostanza di dover allargare una finestra temporale al fine di consentire il

VIII



Sommario

servizio di tutti i clienti in un determinato posto nello stesso momento. Anche se
sono le zone a essere associate con delle finestre temporali, lo SMTWAP prevede
comunque di risolvere un problema di routing dove i nodi sono individuati dai
singoli clienti, non dalle zone.

L’obiettivo del problema consiste nel riuscire a determinare il miglior as-
segnamento possibile di finestre temporali alle varie zone, valutando come esso
influisca sul calcolo dei percorsi per le consegne.

Lo SMTWAP può essere visto come un problema di Programmazione Sto-
castica a due stadi (Two-stage), dove il primo stadio (first stage) è dedicato
alla gestione delle zone e alle decisioni da prendere sulle loro finestre temporali,
mentre nel secondo stadio (second stage), una volta che le informazioni sui cli-
enti e sui loro ordini sono rese note, si risolve il problema di routing collegato,
per calcolare i percorsi dei veicoli e i loro costi. Per fare ciò, si sono progettati
e sviluppati alcuni algoritmi ad hoc sfruttando delle euristiche, poi confrontate
e valutate nell’ultima fase del lavoro di tesi, dove sono stati effettuati dei test
sulle istanze generate. Nonostante le euristiche dovrebbero essere perfezionate,
in media l’approccio risolutivo migliora le soluzioni iniziale del 60%.

Una delle applicazioni reali più intuitive del SMTWAP può essere la con-
segna di mobili offerta da un’industria, ma il problema potrebbe essere adattato
anche ad altri casi, come il recapito della posta, il calcolo del percorso di scuo-
labus o mezzi pubblici e la raccolta dei rifiuti urbani. In generale, il problema
rappresenta un punto di partenza per tutte le situazioni in cui organizzare e non
sprecare il tempo a disposizione è di fondamentale importanza.

La tesi è redatta in lingua inglese e organizzata come segue.
Nel Capitolo 1 si discutono i più importanti articoli presenti in letteratura

e collegati allo SMTWAP. Il problema è definito completamente nel Capitolo 2,
dove l’approccio risolutivo è ampiamente spiegato e sono forniti alcuni dettagli
sull’implementazione. Il Capitolo 3 è dedicato ai test computazionali e ai risul-
tati ottenuti. Infine, nelle Conclusioni, si riportano le valutazioni finali sulle
euristiche sviluppate e alcuni suggerimenti per gli sviluppi futuri.

IX



Introduction

“Nothing is a waste of time
if you use the experience wisely.”

Auguste Rodin

What is the value of a second, a minute or an hour? How does time affect
the daily organization? For many and many centuries it has been at the center
of debates and studies; a lot of theories have been developed about its meaning,
but its relevance is not just a matter of philosophy. Time can have also a
financial value: in transport economics there is a mathematical quantity called
Value of Time, which represents the opportunity cost of the time spent by a
person to travel somewhere, which is measured by how much he would pay for
saving time. It is possible to assign a price to every hour, according to the
traveller’s identity and reason to move.

Time can be thought as a useful resource, as in industrial distribution and
logistics, where the goal is to efficiently manage every phase of the process,
respecting the scheduled times. Beyond production, time is essential above all
in the last part of the logistics chain, when goods or services are provided to end
users. The company tries to satisfy customers requests and, at the same time,
to optimize the shipping in terms of costs, without wasting money or time.

The existence of a plan becomes therefore essential, to settle the delivery
service with a daily or weekly organization, following the idea of exploiting at
most the company resources, such as delivery men and vehicles. To build an op-
timal timetable, anyway, the company must know exactly how many customers
have to be served, where they are located and the amount of their orders. For
example, let us consider the case where two or more customers make a request
and suppose to know that they all live in the same street or zip code: this allows
the company, if practicable, to serve them all in just one interval, avoiding to
come back in the same place again. However, this can be done only if details
about customers are given in advance.

From the point of view of the customer, usually the delivery occurs at the
address he has specified, that is often his residence, specially in case of order of
white goods or items to be installed. Home delivery is frequent in e-commerce
and the number of online purchases has been increasing constantly in the last
years. The best advantage for customers is that they do not have to move to
obtain the service, that will be accomplished at the time and place established
in an agreement with the company.

X



Introduction

The time horizon when performing the delivery can be organized focusing
on the delivery area, that can be a city or a province, consisting in several
towns, composed of zip codes and streets. A company can use this partition to
organize its deliveries, deciding to provide the service in a place during partic-
ular moments of the day, called time windows. These ones should be defined
according to the number of customers in that area and their relative requests.
The result of making this for every area would be a complete delivery sched-
ule for the company. Generally, if all data are available, then a good plan can
be constructed, even by hand or, better, automatically through an appropriate
software. The problem arises when this information is not known with certainty
and only statistics can be used, such as probability distributions or average val-
ues of demands or locations. In this case, it is not possible to make a perfect
schedule, but the goal turns into finding one which has a good behavior in every
eventuality.

This is the question dealt with the Stochastic Multi-period Time Windows
Assignment Problem (SMTWAP): since no certain information about future
customers and orders is available but just some historical data, a schedule has
to be built during the considered working period, satisfying customers and, si-
multaneously, minimizing the total delivery cost; all this has to be done thinking
about time as the main constraint to satisfy, through time windows assigned to
zones of the considered area.

The general problem of serving a set of customers, satisfying time windows
and in presence of stochastic information, has been already treated in the past,
but never jointly considering the geographical aspect of dealing with zones and
the time windows assignment problem. Usually the set of time windows is given
by assumption, as known data, and they cannot be modified but just assigned
to every customer. In the SMTWAP the sets of time windows are not provided
at the beginning but they have to be defined and, once built, they do not remain
fixed. The solving approach developed in this thesis focuses in particular on the
manipulation of times intervals and zones. It may happen that a given time
interval is not appropriate for a zip code, but it would be optimal for another
one; other times, the service day is just wrong and it would be better to try
another period. Moreover, it could be the case that a time window should be
expanded, to serve all customers in a determined area at the same time. It has
to be underlined that in the SMTWAP zones instead of customers are assigned
to sets of time windows, but the related routing problem involves nodes that
represent customers, not zones.

Given an initial assignment of time windows to zones, some moves are applied
in order to find the best practical schedule, corresponding to the best assignment
of time windows to zones, evaluating how it affects the solution of the delivery
routing problem. The SMTWAP can be treated in the Stochastic Programming
as a Two-stage problem, where the first stage is dedicated to the management
of zones and to the decisions to take about their time windows, while in the
second stage the related routing problem is solved, once the information about
customers and their orders are known. To tackle this, some ad hoc algorithms
have been designed and developed using some heuristics, then compared and
evaluated in the last part of the thesis, where solutions to generated instances of
the problem have been provided, showing both the assignment of time windows
to zones and the computed routes with their costs. Even if the heuristics should
be more refined, on average initial solutions are improved by 60%.

XI



Introduction

One of the most intuitive real applications of this problem can be the fur-
niture delivery offered by an industry, but the problem could be also adapted
to model many other situations, e.g. postal and mail delivery, school bus rout-
ing and waste collection. Generally speaking, the problem can be thought as
a starting point for all real cases where it is basic to organize time and not to
waste it.

The thesis is organized as follows.
In Chapter 1, the most important articles proposed in literature and related

to the SMTWAP are discussed. The problem is completely defined in Chapter 2,
where the solving approach is explained and some details about the implemen-
tation of scenarios and solution methods are provided. Chapter 3 is dedicated
to computational test and results. Finally, the chapter Last Note concludes the
work and reports possible suggestions for future developments.

XII



List of Tables

2.1 Classification of ZonesVNS moves . . . . . . . . . . . . . . . . . . 20

3.1 Ranges of number of customers per zone . . . . . . . . . . . . . . 49
3.2 Normal distributions for the number of customers . . . . . . . . . 50
3.3 Percentage improvement on the objective function . . . . . . . . 54
3.4 Average objective function values . . . . . . . . . . . . . . . . . . 57
3.5 Percentage improvement related to the number of zones . . . . . 58
3.6 Percentage improvement related to the number of customers . . . 59
3.7 Initial solution computational times . . . . . . . . . . . . . . . . 60
3.8 ZonesVNS computational times . . . . . . . . . . . . . . . . . . . 61
3.9 Total computational times . . . . . . . . . . . . . . . . . . . . . . 62
3.10 Average computational times related to the number of zones . . . 65
3.11 Average computational times related to the number of customers 66
3.12 Number of drivers used . . . . . . . . . . . . . . . . . . . . . . . 68

XIII



List of Figures

3.1 Example of a grid of zones . . . . . . . . . . . . . . . . . . . . . . 50
3.2 Example of a set of scenarios . . . . . . . . . . . . . . . . . . . . 51
3.3 Example of a textual solution file . . . . . . . . . . . . . . . . . . 52
3.4 Example of a graphic solution file . . . . . . . . . . . . . . . . . . 53
3.5 Percentage improvement on the objective function . . . . . . . . 55
3.6 Percentage of better solutions found . . . . . . . . . . . . . . . . 55
3.7 Average percentage improvement on the objective function . . . . 56
3.8 Average objective function values . . . . . . . . . . . . . . . . . . 56
3.9 Percentage improvement related to the number of zones . . . . . 58
3.10 Percentage improvement related to the number of customers . . . 59
3.11 Computational times . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.12 Average computational times . . . . . . . . . . . . . . . . . . . . 64
3.13 Average initial solution time related to the number of time windows 66
3.14 Computational times related to the number of customers . . . . . 67
3.15 Number of drivers . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.16 Number of drivers related to the number of customers . . . . . . 69

XIV



List of Codes

2.1 Pseudocode of the classic VNS . . . . . . . . . . . . . . . . . . . 16
2.2 Pseudocode of the ZonesVNS . . . . . . . . . . . . . . . . . . . . 19
2.3 Pseudocode of ALNS . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.4 Attributes of ScenarioSet . . . . . . . . . . . . . . . . . . . . . . 26
2.5 Problem template class definition . . . . . . . . . . . . . . . . . . 27
2.6 Attributes of Prob . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.7 Attributes of NodeSMTWAP . . . . . . . . . . . . . . . . . . . . 28
2.8 Attributes of DriverSTMWAP . . . . . . . . . . . . . . . . . . . . 29
2.9 Attributes of SolutionVRPTW . . . . . . . . . . . . . . . . . . . 30
2.10 Attributes of ZoneList . . . . . . . . . . . . . . . . . . . . . . . . 31
2.11 Attributes of ZoneSMTWAP . . . . . . . . . . . . . . . . . . . . 31
2.12 Attribute of TimeWindowSet . . . . . . . . . . . . . . . . . . . . 32
2.13 Attributes of TimeWindowSMTWAP . . . . . . . . . . . . . . . . 32
2.14 Attributes of ScheduleSMTWAP . . . . . . . . . . . . . . . . . . 33
2.15 Pseudocode of LoadZonesHistoric . . . . . . . . . . . . . . . . . . 33
2.16 Pseudocode of LoadScenarios . . . . . . . . . . . . . . . . . . . . 34
2.17 Constructor of FirstStage . . . . . . . . . . . . . . . . . . . . . . 35
2.18 Pseudocode of CreateInitialSolution . . . . . . . . . . . . . . . . 35
2.19 Pseudocode of SetHistoricVisitingNumber . . . . . . . . . . . . . 35
2.20 Pseudocode of BuildInitialSolution . . . . . . . . . . . . . . . . . 36
2.21 Pseudocode of ComputeUsedTW . . . . . . . . . . . . . . . . . . 37
2.22 Pseudocode of ComputeScoreZones . . . . . . . . . . . . . . . . . 38
2.23 Pseudocode of OptimizeOnZones . . . . . . . . . . . . . . . . . . 39
2.24 Pseudocode of Setup . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.25 Pseudocode of MoveToNeighborhood . . . . . . . . . . . . . . . . 41
2.26 Pseudocode of Shaking . . . . . . . . . . . . . . . . . . . . . . . . 42
2.27 Pseudocode of LocalSearchOnZones . . . . . . . . . . . . . . . . 43
2.28 Pseudocode of FirstImprovementOnZones . . . . . . . . . . . . . 44
2.29 Pseudocode of Solve . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.30 Pseudocode of InitializeInternalFields . . . . . . . . . . . . . . . 45
2.31 Pseudocode of Initialize . . . . . . . . . . . . . . . . . . . . . . . 46
2.32 Pseudocode of Optimize . . . . . . . . . . . . . . . . . . . . . . . 46
2.33 Pseudocode of GetWeightedAverageResults . . . . . . . . . . . . 47

XV



Chapter 1

Literature Review

“It may be that in the future you will be helped
by remembering the past.”

Virgil, Aeneid, Book I, Line 203

1.1 The Vehicle Routing Problem
The Vehicle Routing Problem (VRP) was introduced for the first time in 1959
by George Dantzig, creator of the simplex algorithm, and John Ramser [8] with
a different name, The Truck Dispatching Problem, where the issue was to serve
a large number of service stations using some gasoline delivery trucks.

More abstractly, using the terms customers and vehicles instead of stations
and trucks respectively, the problem can be seen as a generalization of the
Travelling Salesman Problem, wheref the goal is to deliver some goods to a
given set of customers exploiting a fleet of drivers.

Every vehicle must start and end its route in a depot, which there can be one
or more of in the considered area. The way customers and depots are located
can be described with a graph, where every node represents a customer or a
depot, while an arcs is the link between two points. The graph can be directed
or undirected, and so the arcs. Reaching a point means crossing through the
respective arc paying some transportation costs related to its length or to its
travel time.

The main goal of the VRP is to find a route for each driver minimizing
the total transportation costs, visiting all customers exactly once and satisfying
their requests, without violating any constraints. The objective function is often
related to the global distance travelled or the global time elapsed, but can be
also about other aspects of the problem, for example the number of vehicles
needed.

The VRP is a NP-hard problem with multiple applications. Many methods
have been developed and implemented to solve it; often, in case of relatively
small instances, exact algorithms can be used, but usually heuristics are pre-
ferred in practice.

1



Chapter 1 - Literature Review

In these fifty years, many variants of the classic VRP have been discussed.
Vehicles can be all homogeneous (i.e., they all have the same features of speed,
cost and capacity) or the fleet can be heterogenous and so mixed, as described
in 1984 by Golden [20] with the Mixed Fleet VRP and by Gendreau [19] in 1999.

The vehicle capacity has been used to define another class of problem, the
Capacitated VRP (CVRP), where vehicles can not load more than a limited
quantity of goods.

Some problems allow, if deliveries can not be performed in one visit, to visit
customers several times, defining the Split Delivery VRP, as illustrated in 1994
by Dror, Laporte and Trudeau [14].

An extension is the VRP with Deliveries and Pickups, introduced by Casco,
Golden and Wasil in 1988 [5], that can be performed simultaneously or in a
different moment, transporting goods also from customers to depots.

Some problem data could be random and in this case problems are called
Stochastic VRPs: customers’ demands, service times and travel times can be
modeled through random variables, and also customers can appear requiring a
service with a certain probability. According to the distribution functions of the
random variables, there can be several realizations.

There exists also a class of VRP problems where customers do not have to
be served during just one day but over a time horizon composed of several days
or periods, as generalized in 1974 by Beltrami and Bodim [3].

The Time dependent VRP was formulated in 1992 by Malandraki and Daskin
[26], introducing the concept of a travel time for each arc: the time required to
pass through an arc is influenced not only by the speed of vehicle but also by
the time of the day and the relative traffic conditions. The travel time and the
cost of an arc are not approximated to deterministic constant values depending
just by distance, but they can vary along the whole arc due to traffic conges-
tions, weather conditions and accidents. Speed distributions are given at the
beginning.

The variant studied in this work is instead the VRP with Time Windows
(VRPTW): it is about imposing a time window on the visit of each customers,
removing some freedom and forcing vehicles to serve customers just during some
given intervals.

Time windows can be hard or soft : the former do not permit to violate the
given intervals, instead the latter allow to make deliveries outside the window,
before the start or after the end of the window, paying additional costs. Ac-
cording to the type chosen, a solution can be infeasible or not; however, hard
time windows can be seen as soft ones, with infinite costs in case of violation.

A vast literature exists on VRPTW providing both exact and heuristic so-
lution approaches. Interested readers are referred to Desrochers et al. [11] and
to Solomon and Desoriers [33], that both in 1988 wrote surveys about arising
routing problems with time window constraints and future perspectives.

Another work was produced in 2001 by Cordeau et al. [7], who considered
several aspects and extensions of the problem and presented a multi-commodity
network flow formulation; Desaulniers et al. [10] wrote the latest survey about
VRPTW.

2



Chapter 1 - Literature Review

1.2 State of the art
In the following, different problems and solution algorithms available in the
literature are analyzed. All of them are essential to better understand the
problem tackled in this thesis and the approaches implemented to solve it.

1.2.1 The Time Window Assignment VRP
Focusing on the main papers that inspired or are related to the SMTWAP,
the most important ones are the Time Window Assignment Vehicle Routing
Problem (TWAVRP) by Spliet and Gabor [35] and the Discrete Time Window
Assignment Vehicle Routing Problem (DTWAVRP) by Spliet and Desaulniers
[36], published in 2014 and in 2015 respectively.

Both problems are stochastic in terms of customers’ demands: there is in
fact a finite set of scenarios, where every scenario is a realization of the demand
for each customer and is associated with a probability to occur.

The goal of the TWAVRP is assigning a time window to each customer
during the period of a day and then constructing a vehicle routing schedule for
each scenario, minimizing the expected traveling costs.

A distinction is made between exogeneous and endogeneous time windows:
the former can be imposed by local government (e.g., only daytime hours), while
the latter can be chosen by the supplier and the customer, agreeing on a specific
time interval.

According to the TWAVRP, time windows are assigned to customers before
demand is known, then the VRP is solved, considering the assignment just done
in the constraints; feasible routes, identified by the main variables xr, are se-
lected in each scenario.

Spliet and Gabor [35] model a mixed integer linear program and solve its
relaxation that allows nonelementary routes with a Column Generation algo-
rithm:

• the relaxed program corresponds to the master problem, where only a
subset of variables or routes is considered;

• the subproblem has the purpose to identify new feasible routes to be added
to the master problem and solve it again; if no route is found, the current
solution is optimal for the master problem.

The objective of the Column Generation is to find lower bounds solving one
pricing problem for every scenario; after that, some valid inequalities valid for
VRPs are added to the problem. Finally, a Branch-and-price-cut algorithm is
proposed to solve the problem.

In the DTWAVRP [36] for each customer there is instead a discrete set of
candidate time windows, from which just one has to be selected, and the time
horizon is composed of several days.

Another difference with the TWAVRP [35] is that the DTWAVRP is dis-
cussed as a Two-stage stochastic optimization problem: in the first stage a time

3



Chapter 1 - Literature Review

window is assigned to every customer from the set of possible time windows; in
the second stage, after demand is known, vehicle routes are computed.

The developed method is still an exact Branch-price-and-cut, from which
five Column Generation heuristics are derived to be used for larger instances.

1.2.2 Time Slot Management in Attended Home Delivery
The Time Slot Management in Attended Home Delivery (TSMP) tackled by
Agatz et al. [1] does not consider explicitly time windows but just deals with
time slots. They focused on the e-grocery business and developed a fully au-
tomated approach to produce a time slot schedule for deliveries: time slots are
selected to form a set that is offered in each of the zones of a service region. A
zone is called zip code.

In literature, time slots are typically assumed to be exogenous information;
in this case, the company offers to customers a choice of narrow delivery time
slots, i.e. a two-hour delivery slot from a set of time slots available in their zip
code areas; every time slot has a fee to be paid. The TSMP allocates one time
slot for each zip code geographically, prior to actual order intake.

Demand is measured in terms of customer orders and over a time horizon of a
week, therefore the expected amount for each zip code is known and independent
from the set of offered time slots and it is divided evenly over the set of offered
time slots; that means that all time slots are equally popular.

Split delivery is allowed and multiple vehicles can visit the same zip code in
the same time slot, but slots can not overlap among different zones.

The purpose is to minimize the expected delivery costs, meeting all service
requirements.

Agatz et al. [1] use two different approaches to solve the problem:

• A continuous approximation model, for estimating the delivery cost of a
given time slot schedule assigned to a set of zip codes. Starting from
the evaluation of a given time slot schedule, a local search is made to
improve the solution found: for each zip code, the time slot allocation with
minimum expected delivery cost is computed, keeping time slots assigned
to other zip codes fixed. Then the current time slot schedule is adjusted
and the procedure is repeated, as long as there is a reduction greater than
some threshold or a maximum number of iterations is done.

• An integer programming model, using a seed-based scheme, grouping cus-
tomers of the same zip code into a circle, where the center dot represents
the seed. Routing costs for a vehicle are approximated by the sum of the
cost of its route through the seeds plus the estimated costs due to the visit
of customers inside a circle, considering their distance from the seed.

1.2.3 Heuristics for the Time Slot Management
The TSMP has been also studied developing some appropriated heuristics and
metaheuristics, as done in 2014 by Hernandez et al. [22].

They model the problem as a Periodic VRP (PVRP), considering a period
of a week where every day is divided into a number of time slots or shifts; each
zone has a service frequency corresponding to the number of shifts (i.e., single,

4



Chapter 1 - Literature Review

two or three). Two shifts in the same day can not both appear in the same shift
schedule. Split delivery is not allowed.

Every customer is associated with a geographical zone (e.g. a zip code area)
and every zone is represented with a square, whose side and center depend on
the coordinates of the customers’ location. The service area is modeled as a
complete graph, where every node is a zip code area; demand is known.

The goal is to select a particular shift schedule for each zone, assigning
zones that must be served to vehicles on any given day of the time horizon, then
sequencing the zones, trying to minimize the total travel cost.

The method presented is a Unified Tabu Search, where neighborhood struc-
tures are defined using simple moves, such as the removal of a zone from a route
in a certain time period and the reinsertion in another route. The idea is the
same used in Agatz et al. [1]: after evaluating the current solution, a change is
performed and the procedure is repeated.

Two heuristics are suggested:

• Three Phases - A decomposition approach:

1. a PVRP is solved over the shifts, assigning them to zones and con-
structing a set of routes;

2. exploiting a greedy algorithm, some merge actions are done, con-
necting the routes that are performed in the same day in contiguous
shifts;

3. every route is optimized with a VRPTW heuristic, solving a VRPTW
for each day.

• Directly : the problem is seen as a PVRP with time windows (PVRPTW),
adapting the shift schedules into full day schedules.

To compare performance results, they generated a new set of benchmark
instances.

1.2.4 The Consistent VRP
Another variant of the traditional VRP introduces some restrictions about the
service: customers must be visited by the same driver at the same time, every
day the client makes a request; the problem is called Consistent VRP (ConVRP)
and has been defined in 2009 by Groër, Golden and Wasil [21].

The ConVRP considers a time horizon composed of several periods or days
and it also includes constraints related to the capacity of drivers, so it can been
seen as a Multi-period CVRP.

The objective is to compute routes for each day of the time horizon, being
consistent from one day to the next with customers, satisfying all the constraints
and minimizing the total traveled time of the homogeneous vehicles over the
days.

The problem is formulated as a Mixed Integer Program and optimally solved
when instances are small; otherwise, in case of large scale ConVRPs, an adap-
tation of the Record-to-Record travel algorithm by Li, Golden and Wasil [24]
is used to create a set of template routes; these are exploited to build feasible
routes for each day of the time horizon, applying insertion and removal proce-
dures too.

5



Chapter 1 - Literature Review

1.2.5 An ALNS Heuristic for the PDPTW
Ropke and Pisinger [30] tackled the Pickup and delivery problem with time
windows (PDPTW) designing a very powerful and general framework called
Adaptive Large Neighborhood Search (ALNS), composed of several competing
sub-heuristics, obtained extending the Large Neighborhood Search heuristic.

Since it has been decided to implement ALNS as a part of the solution
method for the SMTWAP, more details about it are shown in Chapter 2.

Each customer is associated with a couple of time windows: one for delivery,
one for pickup operations. Vehicles are allowed to arrive before the beginning
of a time window, even if they would have to wait; instead they can not arrive
after the end of the time window.

The purpose is to construct feasible routes, minimizing the traveled distance,
the elapsed time and the number of unserved requests, that cannot be assigned
to any vehicle and ends up in a virtual request bank.

The main idea at the core of ALNS is to perform very large moves to search
in very large neighborhood explicitly, rearranging up to 30%-40% of all requests
in a single iteration.

1.2.6 Stochastic VRP
The problem of dealing with stochastic information and random variables in
VRPs raised in the 1980s and was treated in 1983 specially by Stewart and
Golden [37], who presented different formulations of the problem and some
heuristics. In 1989 Dror, Laporte and Trudeau [12] suggested a Two-stage ap-
proach with recourse a priori and then with restricted failures in 1993 (see Dror,
Laporte and Trudeau [13]).

Gendreau, Laporte and Séguin [18] made a survey in 1996, describing the
Two-stage formulation and the main problems related. The Two-stage formula-
tion is examined in depth in Chapter 2.

During the last thirty years, stochastic VRP has been examined on several
aspects, according to constraints imposed and techniques implemented.

Herewith a brief selection of recent works that share some features with the
SMTWAP is presented.

Taş et al. [38] studied the VRP with stochastic travel times, soft time win-
dows and service costs: first they used a meta-heuristic to find good solutions to
the problem, implementing a Tabu Search in 2013; then they developed an exact
method with Gendreau in 2014, based on a Column Generation and Branch-
and-price algorithm (see Taş et al. [39]).

In 2014 Gauvin, Desaulniers and Gendreau [17] used a Branch-cut-and-price
algorithm for the VRP with stochastic demands, inspired by the work of Chris-
tiansen and Lysgaard [6], who had introduced a new exact algorithm for the
Capacitated VRP with stochastic demands (CVRPSD), formulating it as a Two-
stage stochastic program with fixed recourse and capacity constraints.

6



Chapter 1 - Literature Review

In 2015 Archetti, Jabali and Speranza [2] focused on the multi-period aspect
of VRPs, considering a fleet of vehicles for each day of the time horizon. They
imposed a temporal constraint when customers have to be served, specifying a
release and a due date; if it is not possible to guarantee that some customers are
served between this interval, additional costs must be paid. A Branch-and-cut
algorithm is used to compare different formulations of the problem.

Also Dayarian et al. [9] studied the Multi-period VRP, focusing on aspects
related to the goods production and considering the seasonal variations in pro-
ducers’ supplies. They designed a mathematical model based on the Two-stage
formulation, where in the First-stage a plan is designed over the time horizon
and in the Second-stage different periods are evaluated; the problem is solved
with a Branch-and-price algorithm.

A recent work about VRP with stochastic demands has been published in
January 2016 by Luoa et al. [25], that considers also transportation costs pro-
portionated to vehicles weights. They used an a priori optimization approach
and suggested a flexible recourse strategy, designing three heuristics for ALNS
and comparing them.

Errico et al. [15] introduced the problem of VRP with hard time windows
and stochastic service or travel times in 2013, solving with a Branch-and-price
algorithm and dynamic programming. More recently, the same authors pub-
lished a work where they formulated the same problem as a Two-stage program
(see Errico et al. [16]): in the first stage service times are unknown and a priori
plan is determined, composed of a set of planned routes; in the second stage,
service times becomes known and some recourse actions are applied to modify
the plan and make the solution feasible.

7



Chapter 2

The Stochastic Multi-period
Time Windows Assignment
Problem

“We are time’s subjects,
and time bids be gone.”

William Shakespeare, Henry IV,
Part II, Act 2, Scene 1, Line 110

2.1 Introduction
In Vehicle Routing Problems, customers are identified by coordinates, indicating
their position on a map and are represented as nodes on a graph. Coordinates
are also used to calculate the distances among customers, which then are as-
signed as weight of the arcs connecting the nodes in the graph. In real problems,
people’s addresses can be used to identify a location, but it has to be considered
that in a map there are also houses, streets and districts; taking into account
topological constraints makes not so easy supplying customers’ orders. It seems
reasonable for a company to deliver goods to customers who are in the same
streets at the same time, avoiding if possible to come back to the same place in
another moment.

A town or a city can be represented as a squared or a rectangular grid, di-
viding the total area into several parts and identifying some zones; consequently
customers can be classified according to their addresses or locations, assigning
zones to them.

In the city area there can be several warehouses or depots where the company
keeps its goods or provisions and where deliveries start from and end to.

A company can have its own fleet of vehicles or it can lean on an external
service; in this problem the only relevant fact is that vehicles cost to the company
in terms of travel time to deliver goods and money. Usually the fleet consists of
homogenous vehicles sharing the same features of size, capacity and speed, but
fleets of heterogenous vehicles are also frequent in practical applications.

8



Chapter 2 - The SMTWAP

Sometimes customers explicitly ask for deliveries in particular parts of the
day or in a specific day of the week; in e-commerce, usually customers choose
among delivery alternatives offered by the company, paying more or less accord-
ing to the option selected. In other cases they do not care about the moment of
delivery and their only requirement is to be served after their orders are done:
this is the eventuality considered in the SMTWAP.

Certainly not all customers and areas can be served at the same time; some
intervals of time are assigned to every zone, during which customers belonging to
that area can be supplied. Zones can have a different number of time windows,
but this number can vary among them, depending on customers’ demands.
The number can be estimated with the historical delivery data hold by the
company, i.e. useful statistics about average customer demands, service times
and locations.

Following the company and the type of delivery, the service can be performed
for example during a single day, a week or a month. The whole period evaluated
is called time horizon. Considering five working days, the same customers do
not have to be served every week, but the set can change according to identities,
locations, demands and service times required, week after week.

Time windows are assigned to each zone before knowing customers and their
requests to satisfy.

When predicting the requests for the following week, according to historical
data, multiple scenarios can happen: all realizable cases should be evaluated,
without forgetting also their probabilities to take place in reality.

Every eventuality contains information about the number of customers to
serve, their locations on the grid and their demands and service times.

Obviously what matters to the company is trying to minimize the total cost
to pay for delivery and to satisfy customers, visiting them in the time windows
allocated for their zones. Some penalties have to be paid if a customer is not
served during the schedule of its zone.

2.2 Stochastic Programming
Often reality has to deal with uncertainty and it may happen that not all pa-
rameters are known for sure but are related to sets of possible cases, mainly
derived from historical observations. This aspect is reflected in stochastic prob-
lems: differently from deterministic problems, where complete information on
data is assumed to be available in any moment, here some variables should be
modeled as random.

The approach to use is called Stochastic Programming and allows to define
appropriate models to include uncertainty, knowing or at most estimating prob-
ability distributions associated with random variables.

There are several ways to manage uncertainty, that can affect feasibility and
optimality, because a best solution for a particular case would not be good or
even practical in other circumstances:

• Using expected values - A common method, frequently followed in prac-
tice, is that of substituting random variables with their expected values.

9



Chapter 2 - The SMTWAP

Given a deterministic linear program with coefficients of some variables
not known with certainty but whose probability distribution are available,
their joint distribution is contemplated. This method has some evident
drawbacks. Constraints containing these variables can change; moreover,
using expected values to replace the coefficients may not provide a solution
that is feasible with respect to the random variables.

• Wait-and-see - All decisions are delayed until the last possible moment,
after all uncertainties have been resolved: the linear programs associated
with all possible outcomes of the random quantities ξ are solved.
This is the so called Distribution problem: finding all solutions xpξq of
the problem for all scenarios and the relative optimal objective values
zpxpξq, ξq; in general none of these solutions are worthwhile or even feasi-
ble respect to the outcome. Finally, it is possible to compute the Expected
Value of the Optimal Solution: Ermin zpx, ξqs “ Erzpxpξq, ξqs.

Herewith the most common objectives under uncertainty are listed:

• minimization of expected costs, used in large-scale optimization;

• minimization of expected absolute deviations from goals;

• vector optimization, in case of a multi-objective model;

• minimization of maximum costs, when partial or none distributional in-
formation is available.

Anyway, it is impossible to find an ideal solution for all possible cases, but
decisions have to be balanced among various circumstances or scenarios.

A scenario is one of the possible outcome of the random vector that compre-
hends all the random variables of the problem. The scenario representation is
usually adopted when random variables are discrete and correlated; otherwise, if
they are independent and continuous, another model is used, using probability
density functions.

Usually information about probabilities can be retrieved thanks to historical
data, if they are available, otherwise through an accurate estimate, but it is also
possible that distributions change with time.

In stochastic programming literature two approaches are studied: future
recourse and restriction of the probability of infeasibility (i.e., management of
system failures).

2.2.1 Two-stage recourse models
The term recourse indicates the corrective actions performed after the realiza-
tion of a random event: first, there is the modelization of a response for each
outcome of the random elements that might be observed, and then the revealed
outcomes are adapted, adjusting the solution following recourse rules.

Under uncertainty, it is essential to adopt initial policies that will accommo-
date alternative outcomes.

10



Chapter 2 - The SMTWAP

Decision variables are explicitly classified according to the moment they are
implemented, relatively to the outcome of the random variable observed.

There are two main phases:

• First stage is before uncertainty is solved; the variables of this phase are
called proactive and are associated with planning issues, applied against
all realizations, to determine an a priori solution;

• in the Second stage, after outcomes are revealed, variables are called re-
active and are associated with operating decisions. This allows to model
a response to the observed outcome: if there are some discrepancies, a
recourse policy is applied to compensate, imposing a penalty cost but
hopefully making solutions still acceptable, even if they cost more. The
modifications introduced should be kept in mind in the following steps,
while computing again the first stage solution.

Standard formulation

Starting from the formulation of a linear problem,

min cTx

s.t.
Ax “ b

x ě 0, x P Rn

(2.1)

this is the standard formulation of a stochastic linear problem, as reported
in Birge and Louveaux [4]:

min cTx` ErQpx, ξpωqqs

s.t.
Ax “ b,

x ě 0

(2.2)

ω represents the uncertain data and Qpx, ξpωqq is the optimal value of the
second stage problem. It is possible to define the value function or recourse
function Q(x) = ErQpx, ξpωqqs = EξQpx, ξq.

The second stage problem can be modeled as follows:

min qT y

s.t.
Tx`Wy “ h,

y ě 0

(2.3)

Considering both first stage and second stage problems, constraints can be
easily divided into two groups: the ones involving just variables of first stage
(i.e., x, called also immediate) and the others including random variables.

The rows Ax “ b contain only the deterministic parameters, therefore they
are for the first stage. Variables used in the rows Tx`Wy “ h can be random
and are used in the second stage problem.

11



Chapter 2 - The SMTWAP

The goal is to minimize the gap between Tx and h, corresponding to the
cost of violations that influence the choice of the first-stage variables x. The
vector y represents the feasible set of recourse actions that can be performed
to fix the solution after the outcome is revealed, while q the recourse costs.
ξ is a vector whose elements are composed from elements of vectors q and h
and matrices T and W, that are respectively called technological and recourse
matrices. Therefore, the second stage problem can be considered a penalty for
violating Tx “ h.

Compact form

Using the definition of the value function Q(x), a compact form of a stochastic
linear program can be written as follows:

min cTx`Qpxq

s.t.
Ax “ b,

x ě 0

(2.4)

The Two-stage problem is linear because the objective functions and the
constraints are linear.

Deterministic equivalent

Using the scenarios representations in presence of discrete random variables, if
the scenarios set is finite, then it is possible to rewrite the standard formulation
to obtain the so called Deterministic Equivalent (i.e., DE); in particular, if the
set of scenarios is K and every scenario ξk = (qk,Wk, Tk, hk) is associated with
a probability pk to happen, the model becomes the following:

min cTx`
K
ÿ

k“1

pkq
T
k yk

s.t.
Ax “ b

Tkx`Wkyk “ hk, k “ 1, ...,K

x ě 0, yk ě 0, k “ 1, ...,K

(2.5)

As the number of random variables increases, unfortunately also the com-
putational requirements do, because the linear programming problem can not
be solved in a reasonable time anymore.

The deterministic equivalent DE is often called the extensive form.

Recourse classification and properties

According to the configuration of the recourse matrices W, there are different
types of recourse:

• if the recourse matrices are all identical, for every realization k P K, then
the recourse is said to be fixed ;

12



Chapter 2 - The SMTWAP

• when the matrices are the identity ones rI, -Is and the behavior of the
model is the same, independently from every k, that is the case of simple
recourse;

• otherwise, the recourse is called general.

The recourse is said to be complete if, whatever the choice of first stage
decisions variables is, a feasible recourse action is practical for every possible
outcome in the set K. There is also a less restrictive property, where recourse are
called relatively complete, that eliminates the constraint that it should happen
for every possible choice of x ; instead it is enough to find variables x such that
constraints Ax = b are valid.

Nonanticipativity

Another constraint can be added to the formulation of a stochastic linear pro-
gram, called implementability or nonanticipativity.

It states that planning decisions must be implemented before any outcome
of the random variables is revealed, meaning that first stage variables must be
identical in every possible scenario.

The Wait-and-see approach is anticipative and therefore is not an appro-
priate decision-making framework for planning, while the general recourse is
nonanticipative.

EVPI and VSS

If the information about the second stage variables are known before choosing
the first ones, the situation is called Perfect Information and the optimal solu-
tion is the mean of all solutions obtained.

The Expected Value of Perfect Information (i.e., EVPI) is the maximum
amount that has to be paid to obtain in return complete information about the
future; therefore, it represents the cost due to the presence of uncertainty. It has
to be used when more information might be available, through deeper extensive
forecasting, sampling or exploration.

The EVPI can be calculated as the difference between the average of the so-
lutions of every possible scenario in case of perfect information, and the optimal
stochastic solution, computed instead using the deterministic equivalent.

Its counterpart is the Value of Stochastic Solution (i.e., VSS), which repre-
sents the possible gain from solving the stochastic model rather than its deter-
ministic counterpart, because it states the value of knowing and using distribu-
tions on future outcomes. It has to be used when no further information about
the future is available.

Also the VSS can be computed as a difference, between the optimal stochas-
tic solution and the weighted average performance of the deterministic model,
obtained substituting every random parameters with their expectations.

13



Chapter 2 - The SMTWAP

2.3 Problem definition
In this section the definition of the problem studied in this thesis is provided.

Consider a set of zones (e.g., zip codes or small areas) Z = {1, . . . , h},
organized in squared or rectangular grid. Let K = {1, . . . , m} be the fleet
of available vehicles, all homogeneous and with the same capacity Q. Vehicles
provide a service that has to be performed during a time horizon of τ periods,
i.e. T = {1, . . . , τ}. All over the grid, there is a single depot, from which all
vehicles have to start their routes and to which they have to return at the end,
during a particular period. Every driver k is associated with a route rk with
cost crk , corresponding to the time it spends outside of the depot. Let W = {1,
. . . , u} be the set of time windows available during the time horizon T. Every
time window w is defined as an interval δ[s, e], where s and e are respectively
the start and the end time of the window, during the period δ. Every zone z
has to be associated with a set of time windows Wz, such that Wz Ď W and
Wz = {w1z , . . . , wµz}, where µz is the number of time windows assigned to z
and it can vary among different zones; µz can be at most equal to τ , because
for each period there can be just one time window assigned to the zone z.

Let V = {0, 1, . . . , n} be the set of customers, where node 0 represents the
depot. At the beginning of every week, when time windows are assigned to each
zone, customers to be served are unknown. V is not a fixed set of customers
but could change week by week, in terms of locations, demands and service
times; this means that the number of customers to serve and the total amount
of demand are unknown until orders are done. A customer v is associated with
a unique zone z and in particular with a location (identified by the couple of
coordinates (xv, yv) ); it is then characterized by a demand dv and a service
time sv. None of the customers specifies a time window during which it would
like to be reached; it is enough for them to be served during the time horizon.

Let Ω be a set of scenarios, where each scenario ω represents a realization
of the set of customers (their locations, demands and service times and also
the zones which they belong to), with a probability pω to occur in reality;
suppose that scenarios are built using historical information. Always according
to historical information, for each zone z a minimum number of visiting times
is established, i.e. a minimum number of time windows to assign to z during
the time horizon. For every scenario ω, an appropriate set of vehicles Kω = {1,
. . . , mω} is given and it is possible to define a complete graph Gω = (Vω, Aω),
where:

• Vω = {0, 1, . . . , nω} is the set of customers to serve in scenario ω plus
the depot, identified by the node 0, whose location (x0, y0) is fixed, inde-
pendently from scenarios, and its demand d0 and service time s0 are zero.
Demand and service time of customer v in scenario ω are indicated with
the terms dωv and sωv , respectively.

• Aω is the set of arcs (i, j ) such that both i and j belong to Vω.
Every arc is characterized by two values: its travel time tij and its travel
cost cij , representing respectively the time required to go through the arc
and the cost to pay; both these quantities satisfy the triangle inequality.

14



Chapter 2 - The SMTWAP

The main objective of the SMTWAP is to build a schedule ϕ, assigning a
set of time windows to each zone, with the purpose of minimizing the expected
travel cost during the time horizon, considering the total traveled time and
distance. For each scenario ω P Ω, the following constraints have to be satisfied:

• every zone z is visited at least a number of times, decided according to
historical information or to the scenario ω;

• every customer v of scenario ω has to be visited within one of the time
windows assigned to its zone z, otherwise a penalty will be paid.

The schedule ϕ is associated with a cost C, corresponding to the weighted
average of the costs of single scenarios, identified with cω:

Cϕ “
ÿ

ωPΩ

pωcω. (2.6)

2.4 Two-stage SMTWAP
The SMTWAP can be treated in the context of Stochastic Programming because
the set of customers, their demands and service times are random variables,
depending on the scenario taken into consideration.

It is possible to adopt the formulation of a Two-stage problem with general
recourse, where the first stage deals with the assignment and management of
time windows to the zones in the given grid; whereas the second stage problem
consists in a VRP with Time Windows for each scenario in the set given as
input; every VRPTW has to be solved respecting all constraints, specially the
fact that a customer has to be served during a time window assigned to his zone.

According to the routes computed during second stage, some changes are
applied to the list of zones in first stage and the VRPTW is solved again, ob-
taining a new current solution.

A solution for the SMTWAP is called Schedule and is composed of:

• the list of zones in the grid, with their corresponding set of time windows;

• the average cost of the given set of scenarios;

• for every scenario, information about its probability to happen, the total
cost and, for every period δ of the time horizon, a full description of the
computed routes of vehicles.

More details about implementation are shown at the end of this Chapter,
while SMTWAP instances and results are presented in Chapter 3.

2.4.1 First stage
Hereafter the main algorithms utilized during the first stage are described:
the approach developed is an appropriate version of the Variable Neighborhood
Search (VNS), whose main purpose is to move and modify the time windows of
the zones, obtaining lists of zones with different assignments.

15



Chapter 2 - The SMTWAP

VNS The meta-heuristic method called Variable Neighborhood Search was
invented in 1997 by Mladenović and Hansen [27].

Consider a minimum problem; VNS starts with an initial solution and tries
to improve it visiting a sequence of neighborhoods. A neighborhood of a solution
x is the set of all solutions obtained applying a particular move to the current
solution; a finite set of these structures must be determined, to be used during
the search.

Neighborhoods N1, . . . , Nkmax
are systematically changed during the search:

there is not a direct trajectory but their exploration proceeds gradually towards
more distant solutions. The new solution found is accepted and substitutes the
current one if an improvement is made. To find local optima within neighbor-
hoods, local search methods are used.

First, VNS defines a small neighborhood of the current solution, with di-
mension k = 1. Within this structure, perturbing the current solution it finds
another feasible one; then it explores, with a local search, the neighborhood of
the new solution found:

• if no improvement is made, the method comes back to the previous solution
and it increases the size of the neighborhood, with k = 2 ;

• otherwise, if a local optimum is found, better than the best solution, then
it is accepted; the search restarts from it, with k = 1.

During the local search, the neighborhood can be examined completely (i.e.
applying an highest descent heuristic and looking for the best possible solution)
or it can be analyzed partially, just stopping at the first improvement found, in
comparison to the initial solution (i.e., first descent heuristic).

The pseudocode of the classic VNS is reported below where it implements a
random descent with a first improvement heuristic in the Local Search.

Code 2.1: Pseudocode of the classic VNS
1 Repeat until the stopping rule is satisfied:
2 {
3 k = 1;
4 Repeat until k = k_max:
5 {
6 a) SHAKING: generate a random x_first in the Nk of x;
7 b) LOCAL SEARCH: starting from x_first, look for a local optimum

x_second using a local search method;
8 c) MOVE OR NOT:
9 if the local optimum found is better than current best solution

10 {
11 move from x in x_second (x = x_second);
12 restart searching with N1(x) (k = 1);
13 }
14 else
15 k++;
16 }
17 }

16



Chapter 2 - The SMTWAP

If no better solution is found, then the method restarts from the best solu-
tion and considers the following neighborhood in the sequence; otherwise, if an
improvement is made, the new best solution is saved and the research comes
back to visit the first neighborhood N1.

The stopping criteria are the number of iterations done and the computa-
tional time elapsed.

Features of the ZonesVNS

VNS was chosen for first stage because of its simplicity and ability to be adapted
to several problems; moreover, it is easy computing and visiting neighborhood
solutions. The variant developed on purpose for this problem is called Zones
Variable Neighborhood Search (ZonesVNS), since it is focused on zones and their
sets of time windows.

Possible moves Several actions can be performed on zones and time windows
to modify them and obtain a different list of zones.

Starting from the current schedule, applying a move allows to define a neigh-
borhood of solutions to evaluate.

Herewith the main moves are listed:

• Exchange Time Windows Slots - It chooses randomly two time windows
of two random different zones in the list and exchanges their opening and
closing times, without modifying their days;

• Exchange Time Windows Slots Of Selected Zones - It does the same op-
eration of the previous move, but just one zone is random while the other
selected is the worst one;

• Exchange Time Windows - It swaps completely two random time windows
of two random different zones, exchanging their days and opening times;

• Exchange Time Windows Of Selected Zones - It does the same operation
of the previous move, but zones are not random;

• Expand Random Time Window - It increases the duration of a random
time window, without violating the depot opening and closing time con-
straints;

• Expand Selected Time Window - It does the same operation of the previous
move, but the time window is not random;

• Expand Start Time and Expand End Time - One of them is called after
Expand Random Time Window or Expand Selected Time Window ; they
allow to add one hour to the considered time window, respectively opening
sixty minutes before the current start time or closing an hour later after
the current end time;

• Move Random Time Window and Move K Random Time Windows - The
former permits to move a random time window of a random zone to a
different day; the latter performs the same, but it does multiple times,
relocating K time windows;

17



Chapter 2 - The SMTWAP

• Move Random Slot and Move K Random Slots - Similarly to the previous
ones, the former acts just on a single random time window, not changing
the day but moving the opening and closing times to a different slot; the
latter works on K time windows;

• Move Worst Time Window - It moves the worst time window to another
day, keeping its opening and closing times fixed.

• Move Worst Slot - Similarly to the previous one, this move operates on
the worst time window, relocating it to a different time slot during its
same day;

• Reduce Random Time Window - It is the opposite move of Expand Random
Time Window, in fact it decreases the duration of a random time window;

• Reduce Start Time and Reduce End Time are the correspondent moves of
Expand Start Time and Expand End Time, i.e. the former postpones the
start of the time window of an hour, while the latter anticipates is end
time.

Initial solution and Setup The ZonesVNS starts with an initial schedule
completely random: according to historical data, for every zone the minimum
number of time windows to serve all customers is computed; therefore, a set of
time windows with the proper cardinality is assigned to each zone.

Since the built schedule can be very bad in terms of quality, a Setup phase
has been added before launching the real ZonesVNS, trying to improve the
initial solution. It consists in applying some moves sequentially for a certain
number of times, moving from the best solution to the current found only if an
improvement is made.

Three different moves can be applied to the current list of zones and they
are chosen randomly among:

• moving a time window to another day (Move Random Time Window or
Move Worst Time Window);

• relocating a time window to another slot, without changing its day (Move
Random Slot or Move Worst Slot);

• expanding a time window (Expand Random Time Window or Expand Se-
lected Time Window).

The set of neighborhoods The neighborhood structure is based on the
Exchange Time Window move: applying this once or several times to the current
solution, the sets of time windows of a couple or more of zones are modified,
obtaining x’ in the k-neighborhood of the current solution x.

The maximum number of exchanges that can be done corresponds to the
number of zones divided by two, since a single swap involves two zones and
therefore there can be just as many couples as the half number of zones.

Neighborhoods are visited increasing the number of exchanges by one at each
iteration, if no improvement is found.

18



Chapter 2 - The SMTWAP

Shaking The aim of this phase is to get a random solution in the considered
neighborhood; no time window is transferred to another day or swapped again
with another one. The move executed to obtain a close solution is Move K
Random Slots: K time windows are just shifted to different opening and closing
times, keeping their days fixed.

Local search The ZonesVNS local search is not based on just one move, but
three in the list of moves are used: expanding the duration of a time window,
exchanging intervals between two time windows of different zones and relocating
a time window to another day. Starting from the current solution, all three local
searches are launched and each of them returns its own first improvement of x’ ;
the schedule x” will be the best among the three results.

Move or not The comparison between the result of local search and the best
solution found is done checking if the cost of second stage of best is higher than
the one of x”: if so, then x” is accepted and the sequence of neighborhoods are
visited again from the first one; otherwise, if the best cost is still lower, then the
research visits the following neighborhood in the set.

Stopping criteria The implemented rules to stop the ZonesVNS are the max-
imum number of iterations or the maximum number of swaps reached, and the
maximum computational time elapsed.

Pseudocode of the ZonesVNS

Hereafter, following the same style of the classic VNS, the pseudocode of the
ZonesVNS is provided.

Code 2.2: Pseudocode of the ZonesVNS
1 Repeat until the stopping rule is satisfied:
2 {
3 1) SETUP PHASE: obtain the current best solution;
4 k = 1;
5 Repeat until k = k_max:
6 {
7 2a) MOVE TO NEIGHBORHOOD: generate x in the Nk of current;
8 2b) SHAKING: generate a random x_first from x;
9 2c) LOCAL SEARCH: starting from x_first, for each kind of

neighborhood where doing a local search, look for the first
improvement and then keep the best result found as x_second;

10 2d) MOVE OR NOT:
11 if x_second is better than the current best solution
12 {
13 move from best in x_second (best = x_second);
14 restart searching with N1(x) (k = 1);
15 }
16 else
17 move to the next neighborhood in the sequence Nk (k++).
18 }
19 }
20 return best;

19



Chapter 2 - The SMTWAP

ZonesVNS Moves Summary

This part summarizes how the ZonesVNS moves are classified, dividing them
according to the method they are used in.

Table 2.1: Classification of ZonesVNS moves

ZonesVNS Method Moves

Setup Move Random Time Window,
Move Worst Time Window,

Move Random Slot,
Move Worst Slot,

Expand Random Time Window,
Expand Selected Time Window,
Reduce Random Time Window,
Reduce Selected Time Window

Set of neighborhoods Exchange Time Windows

Shaking Move K Random Slots

Local search Move Random Time Window,
Move Worst Time Window,

Expand Random Time Window,
Expand Selected Time Window,
Exchange Time Windows Slots,

Exchange Time Windows Slots Of Selected Zones

20



Chapter 2 - The SMTWAP

2.4.2 Second stage
Similarly to what has been done for the first stage, in the following parts the
main algorithms and techniques of the second stage are fully explained. As
anticipated before, the framework exploited to solve the second stage problem
is ALNS, herewith thoroughly analyzed.

The ALNS Framework

If the core of the first stage is the ZonesVNS, its correspondent in the second
stage is the heuristic developed by Ropke and Pisinger [30] for the Pickup and
Delivery Problem with Time Windows (PDPTW) and then adopted also for
other problems, as described in [28].

Given a solution composed of several routes, the way to improve it usually
involves moving a single request from the current vehicle to another one, or
the move can be relative to two requests assigned to different drivers, to be
exchanged. Every new solution found in such cases is not so dissimilar from the
previous one, because just a small change happened.

The main idea in the Adaptive Large Neighborhood Search is the opposite:
applying very large moves to visit bigger neighborhoods, in order to stir more
the current solution in just a single iteration of the framework. Ropke and
Pisinger [30] estimated to change the 30%-40% of requests in one step.

Paying something in terms of computational time, the evaluation of not
standard moves allows to get higher diversification and to find very good quality
solutions.

ALNS is the extended version of the Large Neighborhood Search (LNS),
heuristic developed by Shaw [32] in 1997 where, starting from a given initial so-
lution built with a simple construction heuristic, a certain number q of requests
are removed and then reinserted in different positions, using several insertion
heuristics. ALNS differs from LNS because it does not use near-optimal meth-
ods for removing and reinserting requests but it implements a set of competing
sub-heuristics composed of several techniques for removal and insertion, to use
during the same search.

At each iteration, just one removal heuristic and just one inserting heuristic
are chosen among those available; the way selection is done depends on their
behavior during the past iterations. The behavior of every sub-heuristic is in-
dicated by a value called weight. When a sub-heuristic is selected during an
iteration, it gains some score depending on the quality of the new solution ob-
tained; after a certain number of iterations called segment, weights are updated
according to scores, following the Adaptive Weight Adjustment procedure; then
scores are reset to zero.

Roulette wheel selection principle The roulette wheel selection principle
is used to pick heuristics to apply: if the total number of sub-heuristics is k and
the weight of the sub-heuristic j is wj , then it is chosen with probability

wj
řk
i“1 wi

. (2.7)

21



Chapter 2 - The SMTWAP

The set of sub-heuristics ALNS is adaptive because the dimension q of
the neighborhood is not fixed and also because of the set of sub-heuristics to
select. In the version of Ropke and Pisinger [30], three removal sub-heuristics
are implemented:

• Shaw Removal, which takes off first a random request and computes the
relatedness measure, i.e. the similarity among other requests and the ran-
dom extracted one, then it removes the most similar requests;

• Random Removal, that selects requests randomly;

• Worst Removal, which removes the worst requests in terms of the cost
required to serve them.

Two instead are the insertion sub-heuristics:

• Basic Greedy, that inserts requests at their minimum cost positions;

• Regret, the look-ahead version of Basic Greedy, which considers the differ-
ence between the cost of inserting the request in its best route or in another
position. This sub-heuristic follows the scheme suggested by Potvin and
Rousseau [29]: every customer’s request is evaluated calculating its inser-
tion costs in k routes and finding the best ideal route, i.e. the one with
the lowest impact on the objective function. The integer k represents the
number of routes considered in the evaluation and the regret value is de-
fined as the sum of the differences between the best minimum cost and
every other cost. Every request is associated with a heuristic value; the
one with the largest regret is then inserted in its best route because, oth-
erwise, if the related customer is assigned to a different driver, then the
cost to pay would be very high. This is the meaning of regret : the higher
it is, the more expensive the consequence of not allocating the request in
its best computed route would be.

Stopping and acceptance criteria The procedure stops when a certain
number of iterations have been completed, while the Simulated Annealing is used
as accepting criterion: given the current solution s with f(s) as objective function
and the new obtained solution s’ with f(s’), s’ is accepted with probability
e´pfps

1
q´fpsqq{T . T is the temperature, i.e. a global time-variant value, set high

at the beginning and decreased at each iteration. Simulated Annealing allows
to accept solutions that are worse than the current one, avoiding to be stuck in
local minima.

Sub-heuristics for the SMTWAP

For solving the SMTWAP, both the Basic Greedy sequential insertion sub-
heuristic and the Regret are exploited; in particular, not a single Regret sub-
heuristic is used, but more with several values of k, i.e. considering different
numbers of routes where to insert the request.

About the removal sub-heuristics, beyond the Random Removal, a variant
of the Shaw Removal and another one have been designed for the SMTWAP
especially: Remove Related Zones and Remove Smart.

22



Chapter 2 - The SMTWAP

Remove Related Zones It is a variant of the Shaw Removal sub-heuristic
that removes requests of customers located in the same zone.

Between two customers i and j, a new relatedness measure R(i, j) is defined
as follows, considering that nodes in the same zone are closer in comparison to
others in different areas.

Rpi, jq “

#

distance between i and j, if i, j P the same zone z;
distance between i and j ` highvalue, otherwise.

(2.8)
If i and j belong to different zones, then an highvalue is added to the relat-

edness measure to discriminate the request j.
When this sub-heuristic is selected to remove q customers from the current

solution, the first request i to remove is selected randomly; for every other
request j, its relatedness measure R(i, j) is computed. According to these results,
requests are then sort and only the pq´1q ones with lower values (i.e., the pq´1q
closest to i) are removed.

Remove Smart This sub-heuristic provides an improved version of Worst
Removal, because it takes into account the time constraints of this problem.
Given a route of a driver, Remove Smart sorts its requests according to the
temporal gain they would make the driver earn if removed. Considering the
request i, the temporal gain associated with the removal of i includes:

• the time required to insert i in the route and reach it;

• possible waiting time before the opening of its time window, to serve it.

After sorting all requests according to this value in a decreasing order, various
choices can be done:

• removing the first request in the ordered set would mean taking off the
best request, i.e. the one which requires less time, and it could be done to
diversificate;

• instead, picking the last request would imply removing the one that takes
more time to the vehicle;

• also removing a random request can be done, providing an analogous
version of Random Removal.

Procedure

To solve the VRPTW defined in the second stage of the SMTWAP, at the be-
ginning an initial solution is obtained, using the Regret sub-heuristic, to try
to assign a driver to every customer, and ALNS with a high temperature to
diversificate and get a good solution.

After computing the initial routes for all vehicles during the considered time
horizon, ALNS is launched, setting the temperature to a very low value to be
almost sure to accept a solution, if its objective function is better than the cur-
rent best one.

23



Chapter 2 - The SMTWAP

Starting from the current solution, at each iteration the number q of requests
to remove is computed, keeping into consideration how many customers are
assigned to drivers and therefore how many of them can be removed at most.

Then, among the sub-heuristics implemented in ALNS and using the Roulette
wheel selection principle, a removal operator and an insertion operator are se-
lected and applied, to take off q requests from the routes and re-insert them in
different positions, obtaining the new current solution and its related cost.

Depending on the quality of the new solution, the selected sub-heuristics
earns some scores that will be needed to update their weights every N iterations.

Finally, it is possible to compare the cost of the current solution produced
with the one of the best solution: if it is better, the method replaces the best
solution with the one just found and restarts from it at the following iteration.

Pseudocode of ALNS

Hereafter the pseudocode of ALNS is provided, inspired by the pseudocode of
the LNS heuristic described in [30].

Code 2.3: Pseudocode of ALNS
1 Function ALNS(solution s)
2 {
3 best = s;
4 Repeat until the stopping rule is satisfied:
5 {
6 current = s;
7 1a) DECIDE the number q of requests to remove/insert;
8 1b) SELECT a couple of sub-heuristics to remove/insert requests;
9 1c) REMOVE q requests from current with removal sub-heuristic;

10 1d) INSERT removed requests into current with insertion
sub-heuristic;

11 1e) MOVE OR NOT:
12 if ( f(current) < f(best) )
13 best = current;
14 1f) ACCEPTANCE:
15 if ( accept(current, s) )
16 s = current;
17 }
18 return best;
19 }

Cost of the second stage

To evaluate the quality of a schedule, the cost of the second stage has to be
computed, because it permits to compare several solutions, obtained assigning
different sets of time windows to the zones in the grid.

Cost of a route Every scenario has a fleet K of drivers; the cost of one of
them is the cost of its route, performed in a particular day, and corresponds
to the time it spends outside of the depot: service times of requests are not

24



Chapter 2 - The SMTWAP

included because unavoidable, while the waiting times for openings of time win-
dows and the minutes required to move from a location to another are counted.

If the driver k leaves the depot at a certain time go_time and comes back
at arr_time, after serving every customer i in its route rk, then its cost crk can
be computed as follows:

crk “ parr_time´ go_timeq ´
ÿ

iPrk

si. (2.9)

Cost of a scenario The cost cω of scenario ω is directly calculated, taking
into consideration every driver k of the set Kω and their routes (i.e., all drivers
assigned to every period δ in the time horizon T ):

cω “
ÿ

kPKω

crk . (2.10)

Total cost The most important result to compute is the weighted average
among the objective functions of scenarios ω, considering their probabilities pω
to happen. Cϕ represents the cost of the second stage.

Cϕ “
ÿ

ωPΩ

pωcω. (2.11)

25



Chapter 2 - The SMTWAP

2.5 Implementation
Hereafter in this section a full description is provided, about implementation
choices for methods and algorithms.

It must be observed that the code has not been totally implemented from
zero, but a package for solving a simple Capacitated VRP was available, with
an implementation of the ALNS framework as described by Ropke and Pisinger
[30] and Pisinger and Ropke [28].

The package did not include any temporal constraints and, above all, it was
designed for just one deterministic problem. Since the programming language
used was C++, practical for being object-oriented and permitting the use of
templates, the same language has been also chosen for solving the SMTWAP.
It has been used especially for setting up the second stage of the SMTWAP,
developing an appropriate version of the code and implementing all the needed
classes.

The starting code was made available by Prof. Jean-François Côté, pro-
fessor in the Operations and Decision Systems Department at Université Laval
(Québec, Canada) and member of CIRRELT (Centre Interuniversitaire de Re-
cherche sur les Réseaux d’Entreprise, la Logistique et le Transport).

2.5.1 Main objects
In this subsection the most important objects are introduced, to define them
and to give an idea to readers, before explaining in details the implementation
of the two stages of the SMTWAP.

ScenarioSet

The class ScenarioSet represents literally the set of all scenarios revealed at the
beginning of the second-stage, all of them associated with the same vector of
ZoneSMTWAP, i.e. the zones in the grid.

Every scenario is an instance of the class Prob<Node, Driver>, i.e. the
problem definition, and it is linked to an Optimizer, a VRPTW solver based on
ALNS, which contains also the Solution of the problem, with the list of routes
necessary to satisfy all customers’ requests.

Code 2.4: Attributes of ScenarioSet
1 std::vector<ZoneSMTWAP> & list;
2 std::vector< Prob<Node, Driver>* > scenarios;
3 std::vector< Optimizer* > optimizers;
4 std::vector<double> results;
5 std::vector<int> nb_drivers;
6 std::vector<int> empty_routes;
7 std::vector<int> customers_not_served;
8 double depot_opening;
9 double depot_closing;

26



Chapter 2 - The SMTWAP

Other attributes are:

• results, a set of costs of all scenarios, i.e. the objective functions values
obtained solving the VRPTWs;

• nb_drivers, the number of drivers in every scenario;

• empty_routes, the number of drivers not used (i.e., their routes are empty
and do not contain any customer to serve) in every scenario;

• customers_not_served, the number of customers not served, hopefully a
vector of zeros.

The class ScenarioSet contains all needed operations to handle the object.

Prob<Node, Driver>

This class was already in the original version of the code.

Code 2.5: Problem template class definition
1 template <class NodeT, class DriverT>
2 class Prob
3 {
4 // Problem methods and attributes
5 }

A template class is chosen because the aim is to implement the most possible
abstract VRP, with generic customers and vehicles, in fact entities NodeT and
DriverT are not specific for a particular variant of a VRP; the use of a template
allows not to indicate the exact datatype of the class but anyway to define its
behavior, such that classes can be more exploited.

Code 2.6: Attributes of Prob
1 std::vector<NodeT> _nodes;
2 std::vector<DriverT> _drivers;
3 double ** _distances;
4 double ** _times;
5 int _dimension;
6 double _probability;

Prob is defined by the following list of attributes:

• the vector _nodes is the set of customers and depots (depots is in plural
form because for every driver two instances of the same depot are created);

• the vector _drivers contains all required vehicles;

• _distances is the distances matrix, where the element _distancesrisrjs
represents the Euclidean distance between nodes i and j ;

• similarly to _distances, _times is the times matrix, where the element
_timesrisrjs indicates the minutes required to travel the distance between
nodes i and j ;

27



Chapter 2 - The SMTWAP

• the integer _dimension represents the number of rows and columns in the
matrices; in the scenario ω, it corresponds to nω ` 1, i.e. the number of
customers plus the depot;

• the double _probability is the chance to happen for the scenario.

NodeSMTWAP

This is the implementation of the template class NodeT, defined appropriately
for the SMTWAP.

Code 2.7: Attributes of NodeSMTWAP
1 // Node IDs
2 int id;
3 int origin_id;
4 int dist_id;
5

6 // Node data
7 char type;
8 int demand;
9 int serv_time;

10 int x;
11 int y;
12 int zone;
13 double slack;
14 double arr_time;
15 double arr_est;
16

17 // Just for depots
18 double opening_time;
19 double closing_time;

A SMTWAP node can be a customer or a depot; according to the type, it
can have or not different attributes:

• id is the unique identifier of the node; if the node is a customer, it is a
value from the r0, nω´1s, otherwise it is from rnω`2 ¨mωs, where nω and
mω are, as defined in Section 2.3, the numbers of customers and vehicles
in scenario ω;

• origin_id is the original number associated with the node, read in the
instance or in a database; only customers can have it;

• dist_id indicates the index position of the node in the symmetric _times
and _distances matrices (e.g., _distancesrdist_idisrdist_idjs returns the
distance between nodes i and j );

• to distinguish which kind the node is among a customer, a start depot or
a end depot, the char type is used;

• demand and serv_time contain information about the customer’s order;

• the couple (x, y) indicates the customer’s location, its coordinates on the
grid;

28



Chapter 2 - The SMTWAP

• the integer zone is the idz of the zone z where the customer belongs;

• arr_est and arr_time correspond respectively to the time the driver
reaches the node and when it is ready to serve the customer, consider-
ing the opening time of its time window; both of them do not include the
service time;

• just for the depot nodes, there are opening_time and closing_time which
represent the opening times of the depot.

• the amount slack indicates how long in minutes the delivery to the current
node can be delayed, such that none of the time windows of the following
customers in the route will be missed, including the depot closing time;
the concept of forward time slack was introduced by Savelsbergh [31].

Every time the cost of a route is computed, slacks of all nodes assigned
to that vehicle are updated, because they are exploited to evaluate if a
request can be inserted into a route or not. Considering the node i and
the time window [s, e] when it is served, its is computed as follows:

slacki = maxp0, s´ arr_timeiq +
minrpe´maxps, arr_timeiq ´ siq, slackjs

(2.12)

where arr_timei is the arrival time to the node i, si is its service time and
slackj is the slack of the following node j. Slacks are computed backward,
starting from the last customer in the route.

DriverSMTWAP

Also a class for the specific implementation of DriverT is provided.

Code 2.8: Attributes of DriverSTMWAP
1 int id;
2 int day;
3 int startnode_id;
4 int endnode_id;
5 int capacity;
6 int sum_demand;
7 double cur_distance;
8 double cur_duration;
9 bool is_feasible;

10 std::vector<int> used_tw;

• id represents the unique identifier for vehicle k, that belongs to the set
[0, mω ´ 1];

• day indicates when the driver works; it can assume the values from 0 to 4
(i.e., from Monday to Friday);

• startnode_id and endnode_id are the identifiers of the start and end de-
pots of the vehicle;

• the amount capacity indicates how much demand the vehicle can carry;

29



Chapter 2 - The SMTWAP

• sum_demand instead corresponds to the current demand carried by the
vehicle;

• cur_distance and cur_duration are the space the driver has traveled until
the moment and how long;

• the boolean is_feasible indicates if the route can be performed or not;

• during its work day, the driver follows a route to serve some customers,
traveling through several zones in their appropriate time windows: the
vector of integers used_tw is the set of the identifiers of the time windows
visited in the vehicle route.

SolutionVRPTW

Also the class SolutionVRPTW was in the original package and it is based on
the same template classes of Prob, i.e. NodeT and DriverT.

A solution is basically composed of the list of routes, one for each driver,
plus the list of the unassigned customers (obviously at the beginning, before
solving the VRPTW for the first time, all customers are marked as unassigned).

Code 2.9: Attributes of SolutionVRPTW
1 std::vector<NodeT*> Next;
2 std::vector<NodeT*> Prev;
3 std::vector<DriverT*> AssignTo;
4 std::vector<int> RoutesLength;
5

6 Prob<NodeT, DriverT> * _prob;
7 int unassigned_count;
8 std::vector<NodeT*> unassigneds;
9 std::vector<int> unassigned_index;

10 CostFunction<NodeT,DriverT> * _cost_func;
11 double _last_cost;
12 bool _is_feasible;

An instance of SolutionVRPTW has the attributes described as follows:

• vectors Next and Prev are used to know the next and the previous nodes
of a node in a route; for example, if the id of a node is e, it can be used
as index to find Next [e], i.e. the node who follows e in the route;

• AssignTo contains the pointers to the drivers which nodes are assigned to;
for example, given the index e, the element AssignTo[e] returns a pointer
to the driver which serves the node with id e;

• for each route, the number of customers is stored in the vector of integers
RoutesLength;

• the pointer _prob is the reference to the scenario or problem associated
with the instance of SolutionVRPTW ;

• unassigned_count is the number of customers currently not assigned to
any driver, while unassigned_index contains all their identifiers;

30



Chapter 2 - The SMTWAP

• _cost_func is an instance of the class CostFunctionSMTWAP, which im-
plements some useful methods to compute the current cost of the Solu-
tionVRPTW and update drivers’ routes and attributes;

• _last_cost corresponds to the last value computed by the CostFunction-
SMTWAP instance;

• as for drivers, the boolean value is_feasible indicates if the solution is
practical or not.

All required methods to handle the pointers in the lists are implemented.

ZoneList

Code 2.10: Attributes of ZoneList
1 std::vector< ZoneSMTWAP > zones;
2 int last_id_tw;

The class ZoneList represents a manager for the zones in the grid of the
SMTWAP. Its only attributes are:

• zones, a vector of ZoneSMTWAP instances;

• the integer last_id_tw, i.e. the last unique identifier used for time win-
dows.

This class contains all necessary methods to handle the zones, especially the
moves exploited in the ZonesVNS.

ZoneSMTWAP

It implements a zone in the grid and hereafter follows the main features:

Code 2.11: Attributes of ZoneSMTWAP
1 int id;
2 int origin_id;
3 TimeWindowSet * set_tw;
4 double score;
5

6 // Historical data
7 int historic_nb_cust;
8 int historic_demand;
9 int historic_service;

• idz is the unique identifier for the zone z, whose value can be {0, . . . , h´1};

• the original number or code identifier associated with the zone is stored
in the field origin_id ;

• the attribute set_tw points to an instance of the class TimeWindowSet,
manager of the set of time windows assigned to the zone;

31



Chapter 2 - The SMTWAP

• the double score is an indicator of the quality of the set of time windows
assigned to the zone: the higher it is, more the time windows of the zone
are exploited and therefore good;

• integers historic_nb_cust, historic_demand and historic_service are the
historical data relative to the zone, indicating respectively the average
number of customers n̄z belonging to the zone who made an order in the
past, their average demand d̄z and average service time s̄z required to
deliver their goods.

TimeWindowSet

Similarly to the ZoneList class, this represents the manager for a set of time win-
dows, with all required methods; its only attribute is the vector windows, where
each element is a pointer to an instance of the class TimeWindowSMTWAP.

Code 2.12: Attribute of TimeWindowSet
1 std::vector< TimeWindowSMTWAP * > windows;

TimeWindowSMTWAP

This class implements the SMTWAP definition of a time window, i.e. δ[s, e],
as defined in Section 2.3, where:

• δ corresponds to the attribute day and it indicates the period of the time
horizon when the time window is allocated;

• s and e are the start_time and end_time, i.e. the lower and upper bounds
when the time window is opened and closed.

Code 2.13: Attributes of TimeWindowSMTWAP
1 int id;
2 int day;
3 int start_time;
4 int end_time;
5 double is_used;
6 bool is_changed;

Other useful attributes are:

• id, the unique identifier for the time window, whose value is from the set
{0, . . . , u};

• the value is_used indicates how much the time window is exploited in the
different scenarios (see Subsection 2.5.4 to understand how it is computed);

• the boolean is_changed is to understand if the time window has been
modified or not after the first stage (see Subsection 2.5.4 for details about
its use).

32



Chapter 2 - The SMTWAP

ScheduleSMTWAP

It represents the solution of the SMTWAP; it has just two attributes:

• the list of zones in the grid zone_list ;

• the set of solved scenarios, with inside their corresponding instances of the
class SolutionVRPTW, their costs and the average value, i.e. the value of
the SMTWAP objective function.

Code 2.14: Attributes of ScheduleSMTWAP
1 ZoneList zone_list;
2 ScenarioSet set;

2.5.2 Loading phase
Hereafter follows the description of the main parts of the first stage: the loading
of the zones from an input file, the computation and assignment of a set of time
windows to each zone and the management of the whole list of zones.

Loading the zones

The first thing to do is knowing the configuration of the grid, i.e. the exact
number h of the zones and how they are disposed in the geographical area.

All useful information of the grid are stored in a file given as input to the
program.

At the beginning, a list of zones with size h is built and then every element is
fulfilled with its own historical information, using the method LoadZoneHistoric,
that receives the list of zones and the grid file as parameters.

Code 2.15: Pseudocode of LoadZonesHistoric
1 void LoadSMTWAP::LoadZonesHistoric(ZoneList &list, const char * filename)
2 {
3 Starting reading filename;
4 count_zones = 0;
5

6 while there exists a line to read in filename
7 {
8 Take the zone z = list[count_zones];
9 Read the following parameters:

10 origin_id, historic_cust, historic_dem, historic_service;
11

12 Save these information in the zone z;
13

14 count_zones++;
15 }
16 }

33



Chapter 2 - The SMTWAP

Loading the set of scenarios

Right after the list of zones has been loaded, the method LoadScenarios is called,
passing as parameters the empty set of scenarios and another input file, which
contains the scenarios information. The pseudocode of the method is shown
below, where:

• lines [6-13] are dedicated to load generic data common to all scenarios, such
as the number of scenarios, the vehicles capacity, depot opening times and
coordinates, and the number of zones in the grid;

• for each scenario, all data about the set of customers to serve during the
week and their orders are handled in lines [19-25]; instead the creation
and initialization of drivers are in lines [26-34].

Code 2.16: Pseudocode of LoadScenarios
1 void LoadSMTWAP::LoadScenarios(ScenarioSet & set, const char * filecust)
2 {
3 Starting reading filecust
4 while there exists a line to read in filecust
5 {
6 if line contains "# SCENARIOS"
7 Allocate space to the set of scenarios;
8 else if line contains "VEHICLE"
9 Save capacity of vehicles;

10 else if line contains "DEPOT"
11 Save depot coordinates, opening time, closing time;
12 else if line contains "# ZONES"
13 Save number of zones;
14 else if line contains "SCENARIO #"
15 {
16 Start loading the scenario;
17 Associate the scenario to a problem to solve;
18 Save scenario probability;
19 for each customer:
20 {
21 Create a node;
22 Read the following information:
23 {origin_id, zone_cust, x_cust, y_cust, demand_cust,

service_cust};
24 Save these information in the node just created;
25 }
26 Create just the sufficient number of drivers
27 in the first day of the time horizon;
28 for each driver:
29 {
30 Create the nodes (start_depot, end_depot);
31 Save these information:
32 {id, capacity, day, start_depot, end_depot}
33 Set sum_demand = 0;
34 }
35 Add customers to the problem to solve;
36 Add drivers to the problem to solve;

34



Chapter 2 - The SMTWAP

37 Initialize the distances matrix of the problem;
38 Initialize the times matrix of the problem;
39 }
40 }
41 }

2.5.3 Initial solution
When the list of zones and the set of scenarios have been loaded, an instance
of the class FirstStage is created to build an initial solution for the SMTWAP
and start the ZonesVNS, core of first stage.

Code 2.17: Constructor of FirstStage
1 FirstStage(ZoneList &zones, ScenarioSet & scen):
2 zone_list(zones),
3 set(scen),
4 best_sched( CreateInitialSolution() ) {}

To create a new FirstStage object, both the list of zones and the set of scenar-
ios must be passed to the constructor, which also calls the CreateInitialSolution
method.

Code 2.18: Pseudocode of CreateInitialSolution
1 ScheduleSMTWAP FirstStage::CreateInitialSolution()
2 {
3 InitializeAverageScenario;
4 BuildInitialSolution;
5 Solve the set of scenarios;
6 return ScheduleSMTWAP( zone_list, set );
7 }

InitializeAverageScenario computes the average number of customers in the
set of scenarios and calls the method SetHistoricVisitingNumber.

Code 2.19: Pseudocode of SetHistoricVisitingNumber
1 void FirstStage::SetHistoricVisitingNumber()
2 {
3 historical_minimum_tw = new double(nb_zones);
4 historical_total_times = new double(nb_zones);
5 historic_total_customers = 0;
6

7 for each zone z in zone_list:
8 {
9 historical_total_times[z] = 0;

10 historic_total_customers += z->GetHistoricCustomersCount();
11 }
12

13 for each zone z in zone_list:
14 {
15 historical_total_times[z] +=
16 ( ( average_customers * z->GetHistoricCustomersCount() ) /

35



Chapter 2 - The SMTWAP

17 historic_total_customers ) * z->GetHistoricServiceTime();
18

19 historical_minimum_tw[z] =
20 historical_total_times[z] / STANDARD_TW_DURATION;
21 }
22 }

The purpose of SetHistoricVisitingNumber is to compute the minimum num-
ber of times every zone should be visited, according to historical information:

• in lines [3-11] two double arrays are initialized with the number of zones in
the grid as size; the integer value historic_total_customers contains the
sum of all historical number of customers in the several zones;

• for each zone z, instead, in lines [15-20] the minimum number of times of
visiting corresponds to the estimated time needed to serve customers of z,
divided by the standard duration of a time window in minutes; this value
is then rounded to the higher closer integer to find the number of time
window to assign to zone z.

After these computations, the method BuildInitialSolution is invoked where,
for every zone z, enough space is allocated for all time windows it needs (line 8).
Then random data about the day and opening times are assigned to every time
window, uniquely identified by the number id_tw that is incremented at each
iteration; its last value is stored in the zone_list, just in case new time windows
will be added in the future.

Code 2.20: Pseudocode of BuildInitialSolution
1 void FirstStage::BuildInitialSolution()
2 {
3 id_tw = 0;
4 for each zone z in zone_list
5 {
6 for tw = 1 to historical_minimum_tw[z]
7 {
8 Reserve space to tw;
9 Assign id_tw to tw;

10 Set tw->is_changed = false;
11 Set tw->is_used = 0;
12 Assign a day not already used to tw;
13 Extract a random value for tw->start_time;
14 Set tw->end_time = tw->start_time + STANDARD_TW_DURATION;
15 id_tw++;
16 }
17 Set the last id_tw used in the zone_list;
18 }
19 Assign zone_list to the set of scenarios;
20 }

In the end, at line 19, the list of zones, completed with their set of time
windows, is assigned to the set of scenarios and finally it can be solved, starting
the second stage for the first time (see Subsection 2.5.5). The resulting instance
of ScheduleSMTWAP is then stored and used to launch the ZonesVNS.

36



Chapter 2 - The SMTWAP

2.5.4 First stage: management of the list of zones
The list of zones and their time windows are handled by the class ZoneList,
which contains the implementation of the moves used in the ZonesVNS.

It has to be observed that when a move is performed on one or several time
windows, their boolean attribute is_changed is set to true; instead the method
ResetStatus sets them to false. This trick permits to easy individuate which
time windows have been modified.

Beyond moves, also some statistics have been implemented, useful to com-
pute some indicators after the second stage is solved. Within this group, the
following methods can be found:

• GetWorstTW - Its purpose is selecting the worst time windows in the
whole zone list, evaluating the attribute is_used, i.e. returning the zone
with the lowest value;

• GetMostUsedTW - Otherwise, in this case the most used time windows is
returned, i.e. the one with the highest is_used value;

• GetWorstZone - This method instead returns the worst zone, according
to the value of score.

The way is_used and score attributes are computed depends on the results
of the second stage.

For every time window the value used_tw is computed as follows, with the
method ComputeUsedTW in the ScenarioSet class:

Code 2.21: Pseudocode of ComputeUsedTW
1 void ScenarioSet::ComputeUsedTW()
2 {
3 for each scenario s in scenarios_set
4 for each zone z in zone_list
5 for each time window w
6 {
7 used_tw = 0;
8 count = 0;
9

10 for each driver that uses w in its route
11 count++;
12

13 used_tw += count * probability of s;
14 }
15 }

For each scenario ω, count indicates the number of times a time window
is used by drivers, i.e. how many drivers utilize it to serve customers in the
corresponding zone (see lines 10 and 11). Since the same time windows and
zones appears in all problems and every scenario has its own probability pω to
happen, the attribute used_tw is computed as the weighted sum of the several
count at line 13.

It represents an indicator of how time windows are exploited.

37



Chapter 2 - The SMTWAP

The value used_tw of a time window w can be:
$

’

&

’

%

0 ă used_tw ă 1, if w is not used in every scenario;
used_tw “ 1, if w is used exactly once in every scenario;
used_tw ą 1, if w is used once or more in every scenario.

If it is less than 1, then it can mean that the time window ω might be moved
to another day or to a different slot, or even removed because not necessary.

These used_tw values are needed to calculate the score of a zone, i.e. an
index of how its set of time windows is good; it corresponds to the sum of
used_tw of every time window in the set assigned to the zone z, divided by the
cardinality of the set.

Code 2.22: Pseudocode of ComputeScoreZones
1 void ScenarioSet::ComputeScoreZones()
2 {
3 for each zone z in zone_list
4 {
5 Set score to 0;
6

7 for each time window w assigned to z
8 score += used_tw of w;
9

10 score = score / nb of time windows of z;
11 }
12 }

Every time the second stage is performed, these statistics are reset to zero,
in order to be computed again.

ZonesVNS procedure

The main function of the procedure is called Optimize, and it is composed of
two parts: a Setup phase and the Neighborhood Search.

First, in the Setup phase, the ZonesVNS applies to the list of zones some
moves for a certain number of iterations, performing a simple local search and
saving the best schedule found; then, the core part of the ZonesVNS starts.

Optimizing the schedule The function Optimize works on the initial solu-
tion build at the beginning of FirstStage.

Two versions were implemented: OptimizeRandom, where zones and time
windows are always chosen randomly, and OptimizeOnZones, that instead se-
lects them according to their behavior in the current solution, which is defined
by the attributes is_used for time windows and score for zones.

Hereafter the pseudocode of the latter is described: since the Setup method
is almost the same for both versions, only one implementation has been made,
distinguishing the two types with a char: ‘r ’ for the random one and ‘z ’ for
the other, as can be seen at line 4. The MoveToNeighborhood and Shaking
methods, respectively at lines 21 and 24, are the same for both versions, while
LocalSearchOnZones is proper to OptimizeOnZones, at line 27.

38



Chapter 2 - The SMTWAP

Code 2.23: Pseudocode of OptimizeOnZones
1 void ZonesVNS::OptimizeOnZones()
2 {
3 // 1. SETUP PHASE
4 ScheduleSTMWAP best = Setup(’z’);
5

6 // 2. NEIGHBORHOOD SEARCH
7 iter = 0;
8 nk = 0;
9 start_time = clock();

10 time = 0;
11

12 while(iter <= VNS_MAX_ITER)
13 {
14 ScheduleSMTWAP current = best;
15 nk = 1;
16 int VNS_MAX_NB_EXCHANGES = nb_zones/2;
17 while(k <= VNS_MAX_NB_EXCHANGES && iter <= VNS_MAX_ITER
18 && time <= VNS_MAX_TIME)
19 {
20 // 2a) EXCHANGE TW BETWEEN ZONES nk times
21 ScheduleSMTWAP x = MoveToNeighborhood(nk, current);
22

23 // 2b) SHAKING
24 ScheduleSMTWAP x_first = Shaking(x);
25

26 // 2c) LOCAL SEARCH
27 ScheduleSMTWAP x_second = LocalSearchOnZones(x_first);
28

29 // 2d) MOVE OR NOT
30 if(x_second.GetCost2Stage() < best.GetCost2Stage())
31 {
32 best = x_second; // Better solution found
33 nk = 1;
34 }
35 else
36 nk++; // No improvement;
37

38 iter++;
39 time = clock() - start_time;
40 }
41 iter++;
42 }
43 }

Integers iter and nk are used respectively to count the total number of
iterations done and to know how many swaps have to be performed to move to
the next neighborhood from the current solution.

The maximum number of exchanges VNS_MAX_NB_EXCHANGES is de-
fined in line 14.

At lines [30-36] the MoveOrNot comparison is done only between x_second
and the best schedule found, because x_second is already the improved schedule

39



Chapter 2 - The SMTWAP

of x_first or, if no better solution was found in LocalSearchOnZones, x_second
corresponds exactly to x_first. If the cost of second stage of the best schedule is
higher than the cost of x_second, then the list of zones and the set of scenarios
of x_second are saved into best, becoming the new best solution found; then nk
is reset to 1. Otherwise, if the best cost is still lower, then nk is increased.

As can be observed at lines 17 and 18, the whole procedure stops when one
or more of the following stopping criteria are satisfied: the maximum number
of iterations is reached, or the maximum number of exchanges or the maximum
computational time elapsed.

Setup Phase As already described in Subsection 2.4.1, three different moves
can be applied randomly extracting a number, as can be seen in lines [12-34]:

• if setup_move is 0, then a time window is moved to a different day (see
lines [15-19];

• instead, if it is 1, a time window is relocated to another slot, without
changing its day (see lines [21-25];

• otherwise, if setup_move is 2, there is the expansion of a time window
(see lines [27-31]).

As said before, according to the type of the Optimize method, moves can
work on random zones and time windows or on the worst ones.

Code 2.24: Pseudocode of Setup
1 void ZonesVNS::Setup(char vns_type)
2 {
3 current = best;
4 for VNS_SETUP_NB_ITER
5 {
6 From current:
7 Get the current_list of zones;
8 Get the current_set of scenarios;
9

10 ResetStatus of current_list;
11

12 setup_move = random number in [0, ..., VNS_SETUP_NB_TYPE_MOVES];
13 switch(setup_move)
14 {
15 case 0: if(vns_type == ’r’)
16 Apply Move Random Time Window to current_list;
17 else
18 Apply Move Worst Time Window to current_list;
19 break;
20

21 case 1: if(vns_type == ’r’)
22 Apply Move Random Slot to current_list;
23 else
24 Apply Move Worst Slot to current_list;
25 break;
26

40



Chapter 2 - The SMTWAP

27 case 2: if(vns_type == ’r’)
28 Apply Expand Random Time Window to current_list;
29 else
30 Apply Expand Selected Time Window to current_list;
31 break;
32

33 default: break;
34 }
35

36 Set current_list to current_set;
37 ApplyChanges to current_set;
38 Optimize current_set;
39

40 if(current.cost < best.cost)
41 best = current; // Better solution found
42 else
43 current = best; // No improvement
44 }
45 }

At line 37 the method ApplyChanges is invoked: for each scenario in cur-
rent_set, it examines which drivers or routes are affected by the changes done
on time windows in current_list. A driver is considered affected if, within its
route, it travels through one or more zones influenced by the moves just ap-
plied to time windows; since the time windows have been modified, probably its
route has become unfeasible. Therefore, the method removes all the customers
assigned to the driver and marks them as unassigneds.

Then, at line 38, current_set has to be optimized again, providing a new
current schedule to compare with the best one (see lines [40-43]).

Move to neighborhood The move chosen to make the ZonesVNS visit the
sequence of neighborhoods Nk is Exchange Time Windows which, when k = 1,
operates one swap between two random time windows of two zones; generally,
considering the k -neighborhood of the current solution, it performs k swaps
among k couples of zones.

The method receives as parameters the number of exchanges to do, that
corresponds to a particular neighborhood of the schedule x, also passed in input.

The return value is another schedule cur, element of the neighborhood
Nnb_exchanges, that is not so far from x : a percentage is computed about how
distant cur is from x, and it is stored in the variable gap; if this is not less than
the threshold VNS_NEIGHBORHOOD_GAP, the procedure is repeated.

This is done to obtain a different solution from x but still good, not too
much more expensive.

Code 2.25: Pseudocode of MoveToNeighborhood
1 ScheduleSMTWAP ZonesVNS::MoveToNeighborhood(int nb_exchanges,

ScheduleSMTWAP & x)
2 {
3 ScheduleSMTWAP cur = x;

41



Chapter 2 - The SMTWAP

4 gap = 0;
5

6 do{
7 cur = x;
8 From cur:
9 Get the current_list of zones;

10 Get the current_set of scenarios;
11 zone_changed = [ ];
12 ResetStatus of current_list;
13

14 for i = 1 to nb_exchanges
15 {
16 Apply Exchange Time Windows to current_list,
17 without touching the zones
18 whose identifiers are in zone_changed;
19

20 Insert in zone_changed the identifiers of the zones affected;
21 }
22 Set current_list to current_set;
23 ApplyChanges to current_set;
24 Optimize current_set;
25 gap = (current.cost - x.cost)/x.cost;
26

27 } while(gap > VNS_NEIGHBORHOOD_GAP);
28

29 return cur;
30 }

Exchange Time Windows acts just on zones which it has not already affected:
swaps can happen only between two zones not exchanged earlier during the same
execution of the method. To do that, identifiers of touched zones are stored in
the list zone_changed (line 20) and not used in successive swaps (see lines [16-
18]).

Shaking The approach used is similar to the one implemented in Move-
ToNeighborhood : some moves are applied until a still good solution is found,
otherwise the operation is repeated.

Code 2.26: Pseudocode of Shaking
1 ScheduleSMTWAP ZonesVNS::Shaking(ScheduleSMTWAP & x)
2 {
3 ScheduleSMTWAP cur = x;
4 gap = 0;
5 do{
6 cur = x;
7

8 From cur:
9 Get the current_list of zones;

10 Get the current_set of scenarios;
11 ResetStatus of current_list;
12

42



Chapter 2 - The SMTWAP

13 Apply Move K Random Slots to current_list,
14 where K = VNS_SHAKING_NB_MOVES;
15 Set current_list to current_set;
16 ApplyChanges to current_set;
17 Optimize current_set;
18 gap = (current.cost - x.cost)/x.cost;
19

20 } while(gap > VNS_SHAKING_GAP);
21 return cur;
22 }
23 }

VNS_SHAKING_GAP is used, at line 20, to define the value of the thresh-
old, as done with VNS_NEIGHBORHOOD_GAP in MoveToNeighborhood, to
evaluate the quality of the new schedule computed.

Local search Three different simple local searches are performed, all with first
improvement heuristics; the return value is the best schedule obtained among
the three resulting ones.

Code 2.27: Pseudocode of LocalSearchOnZones
1 ScheduleSMTWAP ZonesVNS::LocalSearchOnZones(ScheduleSMTWAP & x_first)
2 {
3 ScheduleSTMWAP expand =
4 FirstImprovementOnZones(x_first, 0);
5

6 ScheduleSMTWAP exchange_timings =
7 FirstImprovementOnZones(x_first, 1);
8

9 ScheduleSMTWAP move_worst =
10 FirstImprovementOnZones(x_first, 2);
11

12 return the best among expand, exchange_timings, move_worst
13 }

To distinguish the kind of moves to apply in the method FirstImprovement,
integers from 0 to 2 are used where:

• 0 corresponds to execute a local search with Expand Selected Time Win-
dow in case of OptimizeOnZones, or Expand Random Time Window when
OptimizeRandom is called;

• 1 stands for Exchange Time Windows Slots of Selected Zones or Exchange
Time Windows Slots;

• 2 is for Move Worst Time Window or Move Random Time Window.

43



Chapter 2 - The SMTWAP

Here follows the pseudocode of FirstImprovementOnZones.

Code 2.28: Pseudocode of FirstImprovementOnZones
1 ScheduleSMTWAP ZonesVNS::FirstImprovementOnZones(ScheduleSMTWAP &

x_first, int move_type)
2 {
3 ScheduleSMTWAP current = x_first;
4 iter = 0;
5 time = 0;
6

7 while( iter <= VNS_FIRST_MAX_ITER && time <= VNS_FIRST_MAX_TIME)
8 {
9 From current:

10 Get the current_list of zones;
11 Get the current_set of scenarios;
12

13 ResetStatus of current_list;
14

15 switch(move_type)
16 {
17 case 0: Apply Expand Selected Time Window on current_list;
18 break;
19

20 case 1: Apply Exchange Time Windows Slots Of Selected Zones on
current_list;

21 break;
22

23 case 2: Apply Move Worst Time Window on current_list;
24 break;
25

26 default: break;
27 }
28

29 Set current_list to current_set;
30 ApplyChanges to current_set;
31 Optimize current_set;
32

33 if(current.cost < x_first.cost)
34 return current; // First improvement found
35 else
36 current = x_first; // No improvement
37

38 iter++;
39 time = clock();
40 }
41

42 return current;
43 }

44



Chapter 2 - The SMTWAP

2.5.5 Second stage: solving scenarios
In the current Subsection, details are provided about the initialization of sce-
narios after loading, how the related VRPTWs are solved and the way the cost
of a schedule is computed.

During the creation of the initial schedule solution in the first stage, after
assigning a set of time windows to every zone with the procedure BuildInitial-
Solution, the method Solve of the class ScenarioSet is invoked on the set of
scenarios.

Code 2.29: Pseudocode of Solve
1 void ScenarioSet::Solve()
2 {
3 InitializeInternalFields;
4 Optimize;
5 }

Solve calls first the method InitializeInternalFields and then Optimize, both
always defined in the class ScenarioSet.

InitializeInternalFields The class ScenarioSet has an attribute, among oth-
ers, a vector of pointers to some instances of Optimizer.

An optimizer is in charge of solving the VRPTW of the scenario which
is linked to, constructing and working on a solution. It is the object which
initializes and defines ALNS operators; then it exploits ALNS to find good
routes to serve all customers in the problem.

Code 2.30: Pseudocode of InitializeInternalFields
1 void ScenarioSet::InitializeInternalFields()
2 {
3 optimizers = [ ];
4 for each scenario s in scenarios_set
5 {
6 Create a new Optimizer opt;
7 Insert opt in optimizers;
8 Initialize opt;
9 }

10 }

At line 8, initializing the optimizer means calling the method Initialize of
the class Optimizer : at the beginning, none of the customers is served by any
driver and they are all marked as unassigned.

The pseudocode of Initialize is reported in the following page.
Before launching ALNS, at line 3 the RegretInsertion heuristic is used to

initially assign customers to drivers’ routes, as described in Subsection 2.5.5,
talking about sub-heuristics of ALNS. RegretInsertion is also used at line 16
during the while loop, after adding a new driver, needed because not all cus-
tomers could not be assigned to a driver during ALNS execution at line 10.

45



Chapter 2 - The SMTWAP

Code 2.31: Pseudocode of Initialize
1 void Optimizer::Initialize()
2 {
3 Use RegretInsertion on the solution sol;
4 Set the initial temperature of ALNS;
5 Set the maximum number of iteration of ALNS;
6 Set the minimum temperature of ALNS;
7

8 while(# unassigned customers in sol != 0)
9 {

10 Use ALNS to optimize sol;
11 if(# unassigned customers in sol == 0)
12 break;
13 Add a new driver to sol,
14 in a random day or when it is more needed;
15 Update sol;
16 Use RegretInsertion on sol;
17 }
18 }

At the end of InitializeInternalFields, every scenario is connected to an op-
timizer with an initial solution and enough vehicles to serve all requests, all
assigned to one of them; routes have just to be optimized.

Optimize In lines [3-7] of the pseudocode in the following page, all statis-
tics about the use of time windows and scores of zones are set to zero, before
optimizing the current solutions of scenarios in lines [10-14].

Code 2.32: Pseudocode of Optimize
1 void ScenarioSet::Optimize()
2 {
3 for each zone z in zone_list
4 {
5 Reset used_tw to 0;
6 Reset score to 0;
7 }
8

9 results = [ ];
10 for each scenario s in scenarios_set
11 {
12 Optimize s;
13 Insert the cost of s into results;
14 }
15

16 for each zone z in zone_list
17 {
18 for each time windows tw assigned to z
19 Compute used_tw of tw;
20

21 Compute the score of z;
22 }
23 }

46



Chapter 2 - The SMTWAP

Optimization rearranges customers’ assignment to drivers during the differ-
ent days of the time horizon, in order to get a lower total cost for all routes
needed to the service.

Get the cost of second stage This value can be retrieved with the method
GetWeightedAverageResults of the ScenarioSet class, whose pseudocode is re-
ported below.

Code 2.33: Pseudocode of GetWeightedAverageResults
1 double ScenarioSet::GetWeightedAverageResults()
2 {
3 average = 0.0;
4 for each scenario s in scenarios_set
5 average += cost of s * probability of s;
6

7 return average;
8 }

Other statistics After finding better solutions, at the end of second stage,
for every time window the value used_tw is computed with the method Com-
puteUsedTW and the score of every zone is consequently calculated, calling the
method ComputeScore; both methods are reported in the previous Subsection.

47



Chapter 3

Computational Results

“Time past and time future
What might have been and what has been
Point to one end, which is always present.”

T. S. Eliot, Four Quartets, Burnt Norton, I

This chapter is devoted to the description of the testing environment includ-
ing the instances generation, the choice of parameters done for the ZonesVNS
and ALNS and the tests performed. Computational results are then reported,
showing that the adopted solution approach can effectively improve the starting
solution.

3.1 Generation of instances
When solving the VRP and its variants, researchers make use of well-known
benchmark instances (see [40]) to test the validity of the developed methods.
Among these, the most famous instances for the VRP with Time Windows are
the ones designed in 1983 by Solomon with 100 customers, and then extended
to include a larger number of requests to serve. In the literature other sets of
instances for the VRPTW can be found, also different from the Solomon’s ones.
Nevertheless, none of them can be used for the SMTWAP, because of many
reasons:

• customers are never assigned to zones but only their coordinates are given
to identify their locations;

• in every set of instances, zones are never considered and therefore their
information is always missing;

• as for the zones, no scenarios are defined;

• in the PVRP instances designed by Cordeau, every customer specifies days
when they can be served, but this does not respect the definition of the
SMTWAP, where customers do not indicate their preferred service days.

48



Chapter 3 - Computational Results

It has been consequently decided to build a new set of instances, to consider
zones information, scenarios and their probabilities. For each instance, two files
are provided that represent the grid of zone and the related set of scenarios.
They are illustrated in Subsections 3.1.1 and 3.1.2, respectively.

3.1.1 An instance of a grid of zones
Suppose there is an historic database of all customers’ past orders, specifying in
each row the identity of the client, which zip code or zone it belongs to, the date
the order was made, the requested demand, the occurred service time and the
relative cost payed. From this table, a sort of map or grid of the different zones
can be built, deriving statistics information. For each zip code z, the following
data are computable:

• the average number of customers nz;

• the average demand per customer dz;

• the average service time per customer sz.

Since no real data from companies were available, some instances of possible
grids of zones have been randomly constructed, using a program specifically
developed in Ruby, called zonegrid_maker.rb . The default grid contains 4
zones, but the scripts allows also to specify in input the number of rows r and
columns c wanted in the grid, to obtain a list of h “ r ¨ c zones.

It has been considered that zones are differently populated; in particular, the
population density can be high, normal or low. In an instance there must be a
certain percentage of highly and lowly populated zones. The average number
of customers in a zone is obtained from a uniform distribution; hereafter the
different ranges used are reported, related to the medium number of customers
wanted per zone.

Table 3.1: Ranges of number of customers per zone

Average Nb Customers Low Range Normal Range High Range

25 [1 - 10] [10 - 20] [20 - 25]

50 [1 - 15] [15 - 35] [35 - 50]

100 [1 - 20] [20 - 70] [70 - 100]

150 [1 - 25] [25 - 125] [125 - 150]

250 [1 - 50] [50 - 150] [150 - 250]

500 [1 - 100] [100 - 350] [350 - 500]

Also the average demand and service time per customer in a zone are ran-
domly extracted from a uniform distribution with given minimum and maximum
values. The considered range for the average demand is [5, 50] (without a de-
fined measure unity) whereas the one for the average service time is [5, 15] (in
minutes).

The resulting file appears as follows, where each zone z is identified by the
quadruple (zipcodez, nz, dz, sz).

49



Chapter 3 - Computational Results

Figure 3.1: Example of a grid of zones

3.1.2 An instance of a set of scenarios
An instance of the grid of zones can be linked to several instances of sets of
scenarios, because in the same area different cases can happen.

The script used to create an instance of a set of scenarios is scenarios_maker.rb,
still expressly written in Ruby ; every output file contains these data:

• the number of scenarios;

• the vehicles capacity Q ;

• the depot coordinates (x0, y0);

• the depot opening and closing times;

• the number of zones h;

• for each scenario, its probability to happen, the number of customers, their
coordinates, demands and service times.

The depot is localized in a random zone, such that it is enough far from a
zone with a low number of customers or demands.

Every zone is represented as a rectangle, with height and width equal to
700 and 1000 units, respectively. Using the meter as measure unit, then a grid
composed of 5 rows and 3 columns, corresponding to 15 zones, is extended over
an area of about 10 km2 and can be used to model some quarters of a big city
or a small town. Smaller grids can outline a district, whereas larger ones may
be suitable for metropolis.

The number of customers of each scenario is obtained through a normal
distribution, given the desired average number and the standard deviation.

Table 3.2: Normal distributions for the number of customers

Average Nb Customers Standard Deviation σ

25 5

50 10

100 15

150 20

250 25

500 30

50



Chapter 3 - Computational Results

According to the statistic information about the grid, customers are dis-
tributed into different zones and the list of orders is derived, still using normal
distributions also for demands and service times.

An instance of the set of scenarios is represented as follows:

Figure 3.2: Example of a set of scenarios

Three instances of grids of zones have been generated, composed of 10, 15
and 20 zones respectively; then sets of scenarios have been produced, linked to
grids, varying the number of customers among 25, 50, 100, 150, 250 and 500.
For each couple (number of zones, number of customers), three instances have
been created, obtaining in the end 54 instances with 4 scenarios each.

The instance name follows the pattern zones_customers_scenarios_setnumber
(e.g., 10_25_4_1 indicates that there are 10 zones in the grid, with 25 cus-
tomers to serve, and 4 scenarios to solve).

51



Chapter 3 - Computational Results

3.1.3 The solution files
At the end of the execution of the ZonesVNS algorithm, two output files are
produced to provide the solution of the instance given in input.

The first file is textual and is organized into two parts:

1. the first one describes the best schedule found, reporting for each zone its
set of time windows;

2. the second one contains the cost of the second stage, corresponding to the
weighted average of the costs of single scenarios. Beyond the objective
function value, for each scenario there are some data about drivers, orga-
nized in the several periods of the time horizon; data include their costs,
the lists of customers served and their timetable.

There is also the information about computational times required to obtain
the initial and the final solutions. Fig. 3.3 presents a part of the solution for
the instance 15_25_4_2.

Figure 3.3: Example of a textual solution file

The second output file is a PDF and shows a graphic representation of the
solution in the grid of zones, describing every period of the time horizon.

Fig. 3.4 illustrates the solution of the first scenario of the instance 15_25_4_2,
showing each day of the considered week; for each driver, its route, the direction
of travel and customers visited are reported.

52



Chapter 3 - Computational Results

(a) Monday (b) Tuesday

(c) Wednesday (d) Thursday

(e) Friday

Figure 3.4: Example of a graphic solution file

53



Chapter 3 - Computational Results

3.2 Computational Results
This section is dedicated to the analysis of computational results, discussing the
solutions quality according to objective function values, computational times
and other solution features.

3.2.1 Improvement on the objective function
In this subsection an analysis is performed on the objective function values
of the final solutions, discussing the percentage improvements using the two
ZonesVNS variants and average results.

Percentage improvements

The average percentage improvement obtained with the ZonesVNS is about
60%, as can be seen in Table 3.3.

Table 3.3: Percentage improvement on the objective function

Instances % Opt % Random % Average
10_25_4 72,88% 85,89% 79,38%

10_50_4 79,59% 77,57% 78,58%

10_100_4 68,05% 67,71% 67,88%

10_150_4 65,78% 74,12% 69,95%

10_250_4 45,63% 45,54% 45,58%

10_500_4 42,52% 54,75% 48,64%

15_25_4 70,92% 81,00% 75,96%

15_50_4 75,58% 83,26% 79,42%

15_100_4 65,97% 64,54% 65,25%

15_150_4 57,88% 64,60% 61,24%

15_250_4 51,17% 52,19% 51,68%

15_500_4 46,15% 39,20% 42,67%

20_25_4 55,27% 69,78% 62,53%

20_50_4 59,18% 67,44% 63,31%

20_100_4 61,34% 55,17% 58,26%

20_150_4 53,09% 58,20% 55,64%

20_250_4 31,05% 46,29% 38,67%

20_500_4 27,08% 47,06% 37,07%
57,17% 63,02% 60,09%

54



Chapter 3 - Computational Results

Also in Fig. 3.5 percentage improvements are shown, computed comparing
the random initial solution generated at the beginning of the first stage and the
best solution found by the ZonesVNS. The two ZonesVNS variants, Optimize
On Zones and Optimize Random, work on the same instance but, since the first
assignment of time windows to zones is purely random, they start from two
different initial solutions.

Figure 3.5: Percentage improvement on the objective function

Figure 3.6: Percentage of better solutions found

Using Optimize On Zones, the best improvement occurs for the instance
15_100_4_2 (91,00%), whereas the worst one is the instance 15_500_4_3
(13,20%). Optimize Random has similar results: the best improvement is
obtained with 10_50_4_3 (89,14%), while the worst one with 15_500_4_1
(25,62%).

Even if in about 60% of instances Optimize On Zones starts from better
initial solutions than Optimize Random, the latter finds better solutions in the
61% of the cases (see Fig. 3.6). Since the number of instances is not low but

55



Chapter 3 - Computational Results

Figure 3.7: Average percentage improvement on the objective function

neither high, this behavior might be due to a lucky case during the optimization,
but probably it indicates that the values used to select worst zones and time
windows should be adapted and presumably enhanced.

Evaluating together the results of the two ZonesVNS variants, average im-
provements and values of objective functions have been calculated, which are
illustrated in Fig. 3.7 and Fig. 3.8, respectively. The results are also reported
in Table 3.4. Larger instances with hundreds of customers present the greatest
values, as predictable, involving higher costs.

Figure 3.8: Average objective function values

56



Chapter 3 - Computational Results

Table 3.4: Average objective function values

Instances Opt (min) Random (min) Average (min)
10_25_4 50,65 41,49 46,07

10_50_4 64,36 56,68 60,52

10_100_4 112,98 144,79 128,88

10_150_4 276,07 161,37 218,72

10_250_4 398,57 397,50 398,03

10_500_4 1010,52 683,80 847,16

15_25_4 126,62 61,76 94,19

15_50_4 130,95 111,51 121,23

15_100_4 223,26 194,60 208,93

15_150_4 281,92 231,37 256,65

15_250_4 397,07 583,79 490,43

15_500_4 587,62 790,25 688,94

20_25_4 206,66 152,51 179,59

20_50_4 245,06 197,35 221,21

20_100_4 183,76 235,34 209,55

20_150_4 405,26 388,69 396,98

20_250_4 783,11 569,66 676,39

20_500_4 1057,74 880,34 969,04

57



Chapter 3 - Computational Results

Percentage improvement related to the number of zones

Table 3.5: Percentage improvement related to the number of zones

# Zones Average % Opt Average % Random Average %
10 62,41% 68,85% 65,63%

15 61,28% 66,96% 64,12%

20 47,83% 57,32% 52,58%
57,17% 64,38% 60,78%

The number of zones can influence the ZonesVNS because a higher number
of zones, and therefore time windows, requires more computational time (see
Subsection 3.2.2) for reasoning, in the first stage, about which moves to apply
and, in the second stage, about which requests insert or remove with the ALNS
heuristics. This can explain why instances based on the grid with 20 zones are
improved less than others (see Table 3.5 and Fig. 3.9).

Figure 3.9: Percentage improvement related to the number of zones

Percentage improvement related to the number of customers

The impact on the improvement due to the number of customers is more intuitive
to understand and results satisfy expectations about it.

Best improvements are obtained with an average of 25 or 50 customers,
independently from the number of zones, decreasing the value of the initial
solution by about 75%. The worst instances are the ones with 500 average
customers, with an improvement of about 40%.

Results are shown in Table 3.6 and Fig. 3.10.

58



Chapter 3 - Computational Results

Table 3.6: Percentage improvement related to the number of customers

# Customers Average % Opt Average % Random Average %.
25 66,36% 78,89% 72,62%

50 71,45% 76,09% 73,77%

100 65,12% 62,47% 63,80%

150 58,91% 65,64% 62,28%

250 42,62% 48,00% 45,31%

500 38,58% 47,01% 42,79%
57,17% 63,02% 60,09%

Figure 3.10: Percentage improvement related to the number of customers

59



Chapter 3 - Computational Results

3.2.2 Computational times
This subsection is focused instead on the evaluation of solutions according to
the computational times required for executing the solving method.

The two main parts of the SMTWAP are the construction of the random
initial solution and the following optimization; therefore they both are evaluated
considering the time they take, beyond the total computational time.

Table 3.7, Table 3.8 and Table 3.9 show the time elapsed during the com-
putation of the initial solution, during the optimization and the total time,
respectively. Both Optimize On Zones and Optimize Random are considered
(see Fig. 3.11) and also average results (see Fig. 3.12).

Table 3.7: Initial solution computational times

Instances Init. Opt (s) Init. Random (s) Average Init. (s)
10_25_4 0,79 0,68 0,74

10_50_4 2,19 2,35 2,27

10_100_4 14,08 12,35 13,22

10_150_4 29,66 35,08 32,37

10_250_4 119,54 135,63 127,59

10_500_4 665,36 731,96 698,66

15_25_4 0,63 0,69 0,66

15_50_4 1,99 2,67 2,33

15_100_4 9,31 9,74 9,53

15_150_4 28,52 28,59 28,56

15_250_4 114,98 113,14 114,06

15_500_4 739,78 764,69 752,24

20_25_4 0,94 0,99 0,97

20_50_4 2,69 2,72 2,71

20_100_4 8,08 8,64 8,36

20_150_4 27,70 30,42 29,06

20_250_4 98,88 101,34 100,11

20_500_4 550,48 935,68 743,08

60



Chapter 3 - Computational Results

Table 3.8: ZonesVNS computational times

Instances VNS Opt (s) VNS Random (s) Average VNS (s)
10_25_4 737,56 63,59 400,58

10_50_4 860,73 86,55 473,64

10_100_4 1074,60 1151,73 1113,17

10_150_4 1884,96 1440,18 1662,57

10_250_4 1927,05 1861,16 1894,11

10_500_4 1601,29 1471,51 1536,40

15_25_4 776,76 32,74 404,75

15_50_4 785,02 76,75 430,88

15_100_4 1185,53 842,05 1013,79

15_150_4 1343,85 1250,99 1297,42

15_250_4 1727,62 1433,89 1580,76

15_500_4 1398,88 1456,86 1427,87

20_25_4 512,91 22,54 267,72

20_50_4 248,37 100,36 174,36

20_100_4 1019,21 1291,70 1155,46

20_150_4 1851,37 1495,46 1673,42

20_250_4 2136,44 1656,05 1896,25

20_500_4 1724,87 1570,46 1647,66

61



Chapter 3 - Computational Results

Table 3.9: Total computational times

Instances Total Opt (s) Total Random (s) Average Total (s)
10_25_4 738,35 64,28 401,32

10_50_4 862,92 88,90 475,91

10_100_4 1088,68 1164,08 1126,38

10_150_4 1914,62 1475,26 1694,94

10_250_4 2046,59 1996,79 2021,69

10_500_4 2266,66 2203,47 2235,06

15_25_4 777,40 33,43 405,41

15_50_4 787,01 79,42 433,21

15_100_4 1194,84 851,79 1023,32

15_150_4 1372,38 1279,58 1325,98

15_250_4 1842,60 1547,04 1694,82

15_500_4 2138,66 2221,55 2180,10

20_25_4 513,84 23,53 268,69

20_50_4 251,06 103,08 177,07

20_100_4 1027,29 1300,34 1163,82

20_150_4 1879,07 1525,88 1702,48

20_250_4 2235,32 1757,39 1996,35

20_500_4 2275,35 2506,14 2390,75

62



Chapter 3 - Computational Results

(a) Total

(b) Initial

(c) ZonesVNS

Figure 3.11: Computational times

63



Chapter 3 - Computational Results

(a) Total

(b) Initial

(c) ZonesVNS

Figure 3.12: Average computational times

64



Chapter 3 - Computational Results

The average time required to compute the initial solution is 148,14 seconds,
while the optimization through the ZonesVNS takes 1113,93 seconds. As said
in Subsection 2.5.4, one of the stopping criteria of the ZonesVNS is the compu-
tational time and in these tests 1200 seconds were set as the limit; the check is
done at the beginning of each iteration of the ZonesVNS. This means that the
execution may be longer, if the limit is exceeded during the phases within an
iteration. In fact, the average total time is 1262,07 seconds, and the worst in-
stances in terms of duration are the 10_150_4_1 (3120,63 s) and 20_100_4_3
(3449,38 s) for Optimize On Zones and for Optimize Random, respectively. The
shortest ones are instead 20_50_4_3 (52,04 s) and 20_25_4_1 (18,36 s).

Computational times related to the number of zones

Observing Table 3.10, it is possible to notice that the average total time generally
does not depend on the number of zones. The available time for computation is
fully exploited almost equally with 10, 15 or 20 zones, meaning that ZonesVNS
iterations need it all; many tests finished their execution because the time limit
was reached. It would be interesting to concede larger intervals of time and see
if results could be improved more.

Table 3.10: Average computational times related to the number of zones

# Zones Average Init(s) Average VNS(s) Average Total(s)
10 145,81 1180,08 1325,88

15 151,23 1025,91 1177,14

20 147,38 1135,81 1283,19

Also focusing just on the computational time of the initial solution shows
that there is not a proper relation only to the number of zones, but the number
of customers should be considered above all.

The number of time windows and the initial solution

Rather than zones, the number of time windows can be related to the computa-
tional time of the initial solution generation. Obviously increasing the number
of zones and customers makes also the number of time windows augment. More-
over, as defined in Section 2.3, each zone can have at most as many time windows
as the number of periods of the time horizon. During the BuildInitialSolution
method (see Subsection 2.5.3) the new time window to be defined for a zone is
associated with a random period not already used for the current zone itself; if
the other time windows, already assigned to the zone, are many, then finding a
free period to assign may be not fast.

Fig. 3.13 shows how the computational time of the initial solution raises
exponentially, increasing the number of time windows.

65



Chapter 3 - Computational Results

Figure 3.13: Average initial solution time related to the number of time windows

Computational times related to the number of customers

In Table 3.11 and Fig. 3.14 it is presented how computational times depend
on the number of customers. Smallest instances with an average of 25 or 50
customers are very fast during both the computation of the initial solution and
the optimization, requiring about 350 seconds totally. Largest ones instead need
more time to generate and improve the solution, about 2000 seconds on average.

Table 3.11: Average computational times related to the number of customers

# Customers Average Init(s) Average VNS(s) Average Total(s)
25 0,79 357,68 358,47

50 2,31 340,70 343,01

100 10,37 1094,14 1104,51

150 29,99 1544,47 1574,46

250 113,92 1790,37 1904,29

500 731,33 1537,31 2268,64

66



Chapter 3 - Computational Results

(a) Total

(b) Initial

(c) ZonesVNS

Figure 3.14: Computational times related to the number of customers

67



Chapter 3 - Computational Results

3.2.3 Drivers
From the results some observations can be done about the number of drivers
used to satisfy all requests.

Average number of drivers

Applying both Optimize On Zones and Optimize Random, the average number
of drivers required is 13. Looking at Table 3.12, it can be noticed that the
maximum number of drivers exploited is 32, for serving customers of instances
15_500_4, whereas the minimum value is about 4, for instances 10_25_4.

Table 3.12: Number of drivers used

Instances Average # Opt Average # Random
10_25_4 4,50 4,42

10_50_4 5,58 5,50

10_100_4 8,67 8,17

10_150_4 9,58 10,25

10_250_4 15,00 15,33

10_500_4 28,33 26,58

15_25_4 5,00 5,25

15_50_4 7,67 7,67

15_100_4 9,92 9,33

15_150_4 10,83 11,50

15_250_4 17,00 17,08

15_500_4 32,00 31,83

20_25_4 6,17 6,33

20_50_4 8,33 8,42

20_100_4 9,33 9,58

20_150_4 12,67 12,25

20_250_4 15,25 16,58

20_500_4 27,83 28,25
12,98 13,02

The trend is showed in Fig. 3.15 where it can be observed that the number
raises in about the same way for instances of different grids.

How the number of drivers is instead related to the number of customers is
represented in Fig. 3.16.

68



Chapter 3 - Computational Results

Figure 3.15: Number of drivers

Figure 3.16: Number of drivers related to the number of customers

69



Last Note

“Time will discover everything to posterity;
it is a babbler, and speaks even when no question is put.”

Euripides

The Stochastic Multi-period Time Window Assignment Problem proposes a
different and innovative point of view for studying the Vehicle Routing Problem,
focusing specially on the concept of time window and, generally, discussing how
time can be a constraint when providing a service to customers. The delivery
area is composed of zones, which are associated with sets of time intervals for
delivery. The objective of the problem was to find a good way to compute a
schedule, programming each delivery day, trying to minimize the total cost for
the company.

A literature review has been done, to discuss the state of art about VRP; the
analysis has been concentrated on variants including time windows and zones.
The SMTWAP has been modeled as a Two-stage problem. For the first stage,
a variant of the Variable Neighborhood Search algorithm has been designed,
for handling and managing zones and time windows. In the second stage, the
heuristics of ALNS have been used to solve a VRP with time windows. Changing
and modifying the time windows assigned to the zones allows to obtain several
timetables, to evaluate in the possible scenarios.

Benchmark instances have been generated, with a different number of zones
(from 10 to 20) and customers (from 25 up to about 500). They all have been
solved, providing textual and graphic solutions. The developed solving approach
improves initial solutions by 60% on average.

Future improvements can involve several aspects.
As far as algorithm’s implementation is concerned, a greedy construction algo-
rithm should be developed to compute the initial assignment of time windows
to zones, substituting the current method which is completely random. The
two ZonesVNS variants, Optimize On Zones and Optimize Random, should be
enhanced in order to exploit better zones and time windows statistics, finding
new criteria to apply moves in the first stage. Other moves, such as removing a
not used time window, may be added to the current list.

Focusing on computational tests, it would be interesting to define and solve
the Deterministic Equivalent of the SMTWAP and see how the solution would
mutate when changing problem data. Moreover, given this formulation, it would

70



Chapter 3 - Last Note

be possible to perform an analysis varying the number of scenarios, studying
the trend of the error computed between the Deterministic Equivalent solution
and the Two-Stage one. More time could be given to the ZonesVNS in order
to visit a larger number of solutions and, therefore, to hopefully find better
schedules. New sets of instances could be used to evaluate performances, trying
new combinations between the number of zones and the number of customers,
maybe changing the time horizon. It would be fascinating also using data coming
from companies, applying the problem to real cases.

Finally, variants of the SMTWAP may be discussed and studied, for example
allowing split delivery, using a heterogenous fleet of vehicles or adding more
features to time windows, such as incentives or penalties.

71



References

[1] N. Agatz, A. Campbell, M. Fleischmann, M. Savelsbergh (2011), Time Slot
Management in Attended Home Delivery, Transportation Science Vol. 45
(3), pp. 435-449, http://dx.doi.org/10.1287/trsc.1100.0346.

[2] C. Archetti, O. Jabali, M.G. Speranza (2015), Multi-period Vehicle Routing
Problem with Due dates, Computers & Operations Research, Vol. 61, pp.
122–134, http://dx.doi.org/10.1016/j.cor.2015.03.014.

[3] E.J. Beltrami, L.D. Bodin (1974), Networks and vehicle routing for municipal
waste collection, Networks, Vol. 4 (1), pp. 65-94, http://dx.doi.org/10.
1002/net.3230040106.

[4] J.R. Birge, F. Louveaux (2011), Introduction to Stochastic Programming,
Second Edition, Springer Series in Operations Research and Financial En-
gineering, Springer, http://dx.doi.org/10.1007/978-1-4614-0237-4.

[5] D.O. Casco, B.L. Golden, E.A. Wasil (1988), Vehicle Routing with Back-
hauls: Models, Algorithms and Case Studies in Vehicle Routing: Methods
and Studies, B.L. Golden, A.A. Assad (eds.), Elsevier Science Publishers,
Vol. 16, pp. 127-147.

[6] C.H. Christiansen, J. Lysgaard (2007), A branch-and-price algorithm for
the capacitated vehicle routing problem with stochastic demands, Operations
Research Letters Vol. 35 (6), pp. 773–781,
http://dx.doi.org/10.1016/j.orl.2006.12.009.

[7] J.F. Cordeau, G. Desaulniers, J. Desrosiers, M. M. Solomon, F. Soumis
(2002), The VRP with Time Windows, in The Vehicle Routing Problem,
P. Toth, D. Vigo (eds.), SIAM Monographs on Discrete Mathematics and
Applications, pp. 157-194.

[8] G.B. Dantzig, J.H. Ramser (1959), The Truck Dispatching Problem, Man-
agement Science, Vol. 6 (1), pp. 80-91, INFORMS,
http://www.jstor.org/stable/2627477.

[9] I. Dayarian, T.G. Crainic, M. Gendreau, W. Rei (2015), A branch-and-price
approach for a multi-period vehicle routing problem, Computers & Opera-
tions Research, Vol. 55, pp. 167–184,
http://dx.doi.org/10.1016/j.cor.2014.06.004.

[10] G. Desaulniers, S. Ropke, O. Madsen (2014), The vehicle routing problem
with time windows in Vehicle routing: Problems, methods, and applications,

72



References

P. Toth, D. Vigo (eds.), SIAM Monographs on Discrete Mathematics and
Applications, pp. 119-159.

[11] M. Desrochers, J.K. Lenstra, M.W.P. Savelsbergh, F. Soumis (1988), Vehi-
cle Routing with Time Windows: Optimization and Approximation, in Vehi-
cle Routing: Methods and Studies, B. Golden and A. Assad (eds.), Elsevier
Science Publishers, pp. 65–84.

[12] M. Dror, G. Laporte, P. Trudeau (1989), Vehicle routing with stochastic
demands: Properties and solution frameworks Transportation Science, Vol.
23 (3), pp. 166-176, http://dx.doi.org/10.1287/trsc.23.3.166.

[13] M. Dror, G. Laporte, F.V. Louveaux (1993), Vehicle routing with stochastic
demands and restricted failures, Zeitschrift für Operations Research, Vol. 37
(3), pp. 273-283, http://dx.doi.org/10.1007/BF01415995.

[14] M. Dror, G. Laporte, P. Trudeau (1994), Vehicle routing with split deliver-
ies, Discrete Applied Mathematics, Vol. 50 (3), pp. 239–254,
http://dx.doi.org/10.1016/0166-218X(92)00172-I.

[15] F. Errico, G. Desaulniers, M. Gendreau, W. Rei, L.M. Rousseau (2013),
Vehicle routing problem with hard time windows and stochastic service time,
Cahier du GERAD, G-2013-45,
http://www.isci.cl/tristan/data/Routing/TRISTAN8_paper_111.pdf.

[16] F. Errico, G. Desaulniers, M. Gendreau, W. Rei, L.M. Rousseau (2016), A
priori optimization with recourse for the vehicle routing problem with hard
time windows and stochastic service times, European Journal of Operational
Research, Vol. 249 (1), pp. 55–66,
http://dx.doi.org/10.1016/j.ejor.2015.07.027.

[17] C. Gauvin, Guy Desaulniers, M. Gendreau (2014), A branch-cut-and-price
algorithm for the vehicle routing problem with stochastic demands Comput-
ers & Operations Research, Vol. 50, pp. 141–153,
http://dx.doi.org/10.1016/j.cor.2014.03.028.

[18] M. Gendreau, G. Laporte, R. Séguin (1996), Stochastic vehicle routing Eu-
ropean Journal of Operational Research, Vol. 88 (1), pp. 3-12,
http://dx.doi.org/10.1016/0377-2217(95)00050-X.

[19] M. Gendreau, G. Laporte, C. Musaraganyi, E.D. Taillard (1999), A tabu
search heuristic for the heterogeneous fleet vehicle routing problem, Comput-
ers & Operations Research, Vol. 26 (12), pp. 1153–1173,
http://dx.doi.org/10.1016/S0305-0548(98)00100-2.

[20] B.L. Golden, A.A. Assad, L. Levy, F.G. Gheysens (1984), The fleet size
and mix vehicle routing problem, Computers & OR, Vol. 11 (1), pp. 49-66,
http://dx.doi.org/10.1016/0305-0548(84)90007-8.

[21] C. Groër, B. Golden, E. Wasil (2009), The Consistent Vehicle Routing
Problem, Manufacturing & Service Operations Management, INFORMS Vol.
11 (4), pp. 630–643, http://dx.doi.org/10.1287/msom.1080.0243.



References

[22] F. Hernandez, M. Gendreau, J-Y. Potvin (2014), Heuristics for Time Slot
Management: A Periodic Vehicle Routing Problem View, CIRRELT,
https://www.cirrelt.ca/DocumentsTravail/CIRRELT-2014-59.pdf.

[23] G. Laporte (2009), Fifty Years of Vehicle Routing, Transportation Science,
Vol. 43 (4), pp. 408–416, http://dx.doi.org/10.1287/trsc.1090.0301.

[24] F. Li, B. Golden, E. Wasil (2005), Very large-scale vehicle routing: New test
problems, algorithms, and results, Computers & Operations Research, Vol.
32 (5), pp. 1165-1179, http://dx.doi.org/10.1016/j.cor.2003.10.002.

[25] Z. Luoa, H. Qinb, D. Zhangc, A. Lima (2016), Adaptive large neighborhood
search heuristics for the vehicle routing problem with stochastic demands and
weight-related cost, Transportation Research Part E: Logistics and Trans-
portation Review, Vol. 85, pp. 69–89,
http://dx.doi.org/10.1016/j.tre.2015.11.004.

[26] C. Malandraki, M.S. Daskin, (1992), Time-Dependent Vehicle Routing
Problems - Formulations, Properties and Heuristic Algorithms, Transporta-
tion Science, Vol. 26 (3), pp. 185-200,
http://dx.doi.org/10.1287/trsc.26.3.185.

[27] N. Mladenović, P. Hansen (1997), Variable neighborhood search,
Computers & Operations Research, Volume 24, pp. 1097–1100,
http://sci2s.ugr.es/sites/default/files/files/Teaching/
GraduatesCourses/Metaheuristicas/Bibliography/HansenVNS.pdf.

[28] D. Pisinger, S. Ropke (2007) A general heuristic for vehicle routing prob-
lems, Computers & Operations Research, Vol. 34 (8), pp. 2403-2435,
http://dx.doi.org/10.1016/j.cor.2005.09.012.

[29] J-Y. Potvin, J-M. Rousseau (1993), A parallel route building algorithm for
the vehicle routing and scheduling problem with time windows, European
Journal of Operational Research, Vol. 66, pp. 331–340,
http://dx.doi.org/10.1016/0377-2217(93)90221-8.

[30] S. Ropke, D. Pisinger (2006) An Adaptive Large Neighborhood Search
Heuristic for the Pickup and Delivery Problem with Time Windows, Trans-
portation Science, Vol. 40 (4), pp. 455–472,
http://dx.doi.org/10.1287/trsc.1050.0135.

[31] M.W.P. Savelsbergh (1992), The vehicle routing problem with time win-
dows: Minimizing route duration, ORSA Journal on Computing, Vol. 4 (2),
pp. 146–154, http://dx.doi.org/10.1287/ijoc.4.2.146.

[32] P. Shaw (1997); A new local search algorithm providing high quality
solutions to vehicle routing problems, Technical report, Department of
Computer Science, University of Strathclyde, Scotland,
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.51.
1273&rep=rep1&type=pdf.

[33] M.M. Solomon, J. Desrosiers (1988), Time Window Constrained Routing
and Scheduling Problems, Transportation Science, Vol. 22 (1), pp. 1-13,
http://dx.doi.org/10.1287/trsc.22.1.1.



References

[34] R. Spliet (2013), Vehicle Routing with Uncertain Demand, ERIM Ph.D.
Series Research in Management, Erasmus University Rotterdam,
http://hdl.handle.net/1765/41513.

[35] R. Spliet, A.F. Gabor (2014), The Time Window Assignment Vehicle Rout-
ing Problem, Transportation Science, Vol. 49 (4), pp. 721-731,
http://dx.doi.org/10.1287/trsc.2013.0510.

[36] R. Spliet, G. Desaulniers (2015), The Discrete Time Window Assignment
Vehicle Routing Problem, European Journal of Operational Research, Vol.
244 (2), pp. 379-391, http://dx.doi.org/10.1016/j.ejor.2015.01.020.

[37] W.R. Stewart Jr., B. Golden (1983), Stochastic vehicle routing: A compre-
hensive approach, European Journal of Operational Research, Vol. 14 (4),
pp. 371-385, http://dx.doi.org/10.1016/0377-2217(83)90237-0.

[38] D. Taş, N. Dellaert, T. van Woensel, A.G. de Kok (2013), Vehicle routing
problem with stochastic travel times including soft time windows and service
costs European Journal of Operational Research, Vol. 40 (1), pp. 214–224,
http://cms.ieis.tue.nl/Beta/Files/WorkingPapers/wp_364.pdf.

[39] D. Taş, M. Gendreau, N. Dellaert, T. van Woensel, A.G. de Kok (2014),
Vehicle routing with soft time windows and stochastic travel times: A col-
umn generation and branch-and-price solution approach, European Journal
of Operational Research, Vol. 236 (3), pp. 789–799,
http://dx.doi.org/10.1016/j.ejor.2013.05.024.

[40] A. van Breedam, J-F. Cordeau, J. Homberger, R.A. Russell, M.M. Solomon,
VRPTW instances, http://neo.lcc.uma.es/vrp/vrp-instances/
capacitated-vrp-with-time-windows-instances/.


