The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21)

Faster and Better Simple Temporal Problems

Dario Ostuni', Alice Raffaele’, Romeo Rizzi', Matteo Zavatteri'*

!'University of Verona, Department of Computer Science, Strada Le Grazie 15, 37134 Verona (Italy)
2University of Trento, Department of Mathematics, Via Sommarive 14, 38123 Povo (Italy)
{dario.ostuni, romeo.rizzi, matteo.zavatteri } @univr.it, alice.raffacle @unitn.it

Abstract

In this paper we give a structural characterization and ex-
tend the tractability frontier of the Simple Temporal Problem
(STP) by defining the class of the Extended Simple Temporal
Problem (ESTP), which augments STP with strict inequal-
ities and monotone Boolean formulae on inequations (i.e.,
formulae involving the operations of conjunction, disjunction
and parenthesization). A polynomial-time algorithm is pro-
vided to solve ESTP, faster than previous state-of-the-art al-
gorithms for other extensions of STP that had been consid-
ered in the literature, all encompassed by ESTP. We show the
practical competitiveness of our approach through a proot-of-
concept implementation and an experimental evaluation in-
volving also state-of-the-art SMT solvers.

Introduction and Related Work

The Temporal Constraint Satisfaction Problem (TCSP),
originally introduced by (Dechter, Meiri, and Pearl 1991),
takes as input a finite set of real variables and a finite set
of constraints. Two kinds of constraints are allowed: unary
and binary; both can take a disjunctive form. A unary con-
straint has the form x € [{1,u1] V --- V [ly,uy], where
x is a variable and 4;,u; € R U {—o00,+00}, —c0 <
l; < u; < o0o. A binary constraint has the form y — = €
[l1,u1] V -+ V [ln,uy], where x and y are variables and,
again, £;,u; € RU {—o00,+00}, —00 < ¢; < u; < o0,
Regardless of the type of constraint, the corresponding in-
volved intervals are disjoint. Note that each unary constraint
x € [l1,u1] V -+ V [€y,uy,] can be seen as a binary one
x—z € [ly,u1] V-V [l,,uy,] where z is an extra variable
on which we impose the unary constraint z € [0, 0]. As such,
one single unary constraint suffices. Or, we can even relax
that one and then consider the solution obtained by sub-
tracting the value of z from that of every other variable. In-
deed, the solution space of a TCSP without unary constraints
is closed under rigid shifting. We remark that binary con-
straints are disjunctions over the same pair of variables (this
restriction is overcome in (Stergiou and Koubarakis 2000)
with the proposal of disjunctive temporal networks). TCSP
asks the following question: does there exist an assignment
of real values to the variables such that all constraints are

“Corresponding author
Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

11913

satisfied? TCSP is NP-complete (Dechter, Meiri, and Pearl
1991).

The Simple Temporal Problem (STP) is the fragment of
TCSP whose set of constraints consists of atoms of the form
y — x € [{,u] only. Historically, STP allows for two rep-
resentations: the interval based one (as we just discussed
above) or a set of inequalities y — x < k where z,y are
variables and k£ € R. While these are equivalent (y — x < k
can be written as y — x € [—o0, k]), the second represen-
tation is more elementary as y — = € [{,u] amounts to
(y—x <u)A(x—y < —L). STP is in P (Dechter, Meiri,
and Pearl 1991).

The set of constraints of an STP can also be generalized
to include strict inequalities y — x < k and inequations
y—x # k. Of course, any strict inequality y —x < k can be
seen as a non-strict inequality y — x < k plus the inequation
y — x # k. Inequations are useful to model temporal plans
in which, for example, we require two events not to happen
at the same time. Koubarakis augmented STP with disjunc-
tions on inequations (y; —x1 # k1) V-V (yp — xp # ky)
in (Koubarakis 1992). He proved tractability of this exten-
sion by providing an algorithm that runs in O(||C||*), where
C' is the set of constraints and ||C'|| is the number of atoms
y — x>k, <€ {<, #} appearing in C. As far as we know,
this was still the bound for this problem.

Gerevini and Cristani defined STP?é, which is a restric-
tion of (Koubarakis 1992) allowing only simple inequa-
tions and not disjunctions of these, resulting in the possi-
bility of handling both sets of strict-inequalities and inequa-
tions (Gerevini and Cristani 1997). They provided an algo-
rithm to solve STP7 that runs in O(n® + h), where n is the
number of variables and h is the number of inequations (or
O(n?) if there are only strict and non-strict inequalities). As
far as we know, the result in (Gerevini and Cristani 1997)
was the state of the art for STP7, still used by more recent
works (e.g., (Broxvall 2002; Montanari et al. 2012; Cooper,
Maris, and Régnier 2013; Carbonnel and Cooper 2015)).

For more details about temporal reasoning, the interested
reader is referred to (Vila 1994; Schwalb and Vila 1998; Bar-
tak, Morris, and Venable 2014).

Satisfiability Modulo Theory (SMT) (Barrett et al. 2009)
can address generalizations of the problems mentioned
above by relying on the quantifier-free fragment of the the-
ory of real difference logic (QF_RDL). QF_RDL allows for

arbitrary Boolean combinations of atoms y — x >3 k, where
x,y are real variables, <€ {<, <, >,>,=,#},and k € Q.

In this logic, strict inequalities y — x < k are usually
turned into non-strict inequalities y — x < k — ¢, with ¢
treated either numerically (Armando et al. 2005) or symbol-
ically as an infinitesimal parameter (Dutertre and de Moura
2006). As far as we know, the latter is the state of the art
on difference arithmetic constraints (Dutertre and de Moura
2006; de Moura, Dutertre, and Shankar 2007).

Note that the core algorithms to solve the problems men-
tioned above are typically based on tuned versions of short-
est path algorithms or the simplex method, e.g., (Dutertre
2014). It is thus interesting and reasonable, e.g., when de-
veloping a more efficient procedure to solve STP with strict
inequalities, to also make a comparison with SMT solvers
supporting QF_RDL.

Organization and Contribution

We start by giving background on STP. Then, we define
the Extended Simple Temporal Problem (ESTP), in which
we allow for inequalities, strict inequalities and monotone
Boolean formulae on inequations. We give a characteriza-
tion of ESTP. Specifically, we define verification criteria to
detect inconsistency or decide consistency of any instance
of ESTP. These allow us to provide a strongly polynomial-
time algorithm to solve ESTP, which is faster than current
state-of-the-art algorithms for previously studied extended
classes of STP. We discuss a proof-of-concept implementa-
tion by comparing several variants of shortest paths algo-
rithms. Moreover, we encode our model as a QF_RDL for-
mula since it is well-known that the satisfiability of conjunc-
tions of atoms y — x > k for e {<, <} is tractable. We
evaluate our performance against the state-of-the-art SMT
solvers that competed in the 15th International Satisfiabil-
ity Modulo Theories Competition — SMT-COMP 2020 —
for QF_RDL (Model Validation Track and Single Query
Track)'. Computational results confirm the practical com-
petitiveness of our approach, which can solve instances close
to 3 million variables within 100 seconds. Finally, we draw
conclusions and discuss future work.

Background

In this section we sum up essential information on STP and
how to efficiently solve it through a reduction to the Single
Source Shortest Paths problem (SSSP) (Cormen et al. 2009).

Problem 1 (STP). Given

e a finite set X of real variables, and

¢ a finite set C of inequalities of the form y — x < k with
y,r € X and k € R,

does there exist a mapping 6: X — R satisfying all con-

straints in C'?

An instance of STP is consistent if such a solution ¢ ex-
ists; inconsistent otherwise. We assume that any instance of
STP appearing in this paper has no dominated inequalities,
where an inequality y — x < k dominates an inequality
y—x < kifk <k.

"https://smt-comp.github.io/2020/index.html

11914

Example 1. Let S = (X, C) be the following instance of
STP: X := {xh T2, T3,T4,T5,T6, 377},

C = {-1'2 —x1 < =22, 13 — 19 < —=3.5,21 —x3 < 5.7,
Ty — w5 < 2,5 —x7 < 1,27 — 16 < 6,
26— x4 < —9,26 — 23 < —3.3, 2 — 24 < -2}

Most of the algorithms that solve instances of STP rely on
their corresponding directed weighted graph representation.

Definition 1 (Directed weighted graph). A directed graph
is a pair (V, A) where V is a set of nodesand A C V x V
is a set of arcs (or, equivalently, directed edges). A directed
weighted graph is a triple (V, A, w) where (V, A) is a di-
rected graph and w: A +— R is a weight function assigning
a real value to each arc.

We write P, := ((x,21),..., (zn,y)) for the path (se-
quence of arcs) going from z to y through a sequence of dis-
tinct nodes. A cycle is a path P, , where x = y. In case of
directed weighted graphs, we write w(FP,) for the weight
of the path (i.e., the sum of the weights of the arcs in the
sequence). A path or a cycle P, , in a weighted graph is
negative if w(Py) < 0.

Definition 2 (Constraint graph). Let S = (X, C) be an in-
stance of STP. The corresponding constraint graph of .S is
the directed weighted graph G = (X, A, w) where:

e A:={(x,y) |ly—x <keC} and
o w(z,y) = kforeachy —ax <keC.
Figure 1 shows the constraint graph of Example 1.

Theorem 1 ((Dechter, Meiri, and Pearl 1991)). An instance
of STP is consistent iff Gg has no negative-weight cycle.

Deciding whether an instance of STP S = (X, C') is con-
sistent can be done by computing a potential function for
Gyg, i.e., a function 7: X — R such that 7(y) — 7(z) <
w(x,y) for each (z,y) € A. This feasible potential is a pos-
sible solution § and can be computed by a run of any SSSP
algorithm. Since we deal with temporal problems, when
unary constraints are not involved, it is also reasonable to
seek a non-negative 7; a guarantee that, unfortunately, we do
not get by just computing a feasible potential. However, this
is not an issue because potential functions are shift-invariant
(Cormen et al. 2009). That is, for any feasible potential func-
tion m and any o € R, it holds that the function defined as
7/ (x) := mw(x)+o foreach zz € X is still a feasible potential
function. Indeed, for any (z,y) € A:

m(y) — 7(z) <w(z,y)
m(y) —7(z) + 0 <w(z,y) +o
((y) +0) = (7(2) + 0) <w(z,y)
m'(y) — 7' (x) < w(z,y).

Example 1 is consistent. Indeed, a potential function 7 for

its constraint graph is shown in Figure 1. Thus, a solution is
0(x1) = 7w(x1) = 0, §(x2) := w(x2) = —2.2, §(w3) :

(for any o € R)

m(xs) = —=5.7, 0(x4) 1= w(xy) = 0, 6(x5) := 7w(xr5) =
=2, §(ze) = w(wg) = —9, and d(x7) : w(wr) = —3.
In case we desire ¢ to be non-negative, we define d(x) :=
m(x) + o foreach z € X, where 0 := | min,ex 7(z)| = 9.

0/9 —2IT
@(2 L5
-9 1
AN x6 6 N x;?
Iu L4
5.7/3.3 9/0 36

Figure 1: Constraint graph of Example 1 (ignoring arc col-
ors) and Example 2 (considering red arcs too). Near the
nodes, there are two labels, 7/m + 9: 7 (in gray) is the value
of the feasible potential taking x; as a source, whereas m+9
(in green) is the corresponding rigidly shifted value. We do
not draw formulae on inequations to keep the figure clear.

Extended Simple Temporal Problem

In (Koubarakis 1992), STP was extended to also handle dis-
junctions on inequations. The definition of Extended STP
(ESTP) generalizes (Koubarakis 1992) by allowing arbi-
trary monotone Boolean formulae on inequations, rather
than only disjunctions.

Problem 2 (ESTP). Given

* afinite set X of real variables,

* afinite set C< of inequalities of the form y — x < k with
y,z € X and k € R,

* afinite set C'< of strict inequalities of the formy — x < k
withy,z € X and k € R, and

* afinite set C'x of monotone Boolean formulae on inequa-
tions generated by the grammar F' ::= y—x # k | FAF |
FVF|(F)withy,z € X andk € R,

does there exist a mapping 6: X — R satisfying all con-
straints in C<, C< and C?

Similarly to STP, an instance of ESTP is consistent if such
a solution ¢ exists; inconsistent otherwise.

Let S = (X,C<,C.,C.) be any instance of ESTP. We
write y — x < k for a generic atom appearing in some con-
straint, where >1 € {<, <, #}. We denote by Ag the set
of all atoms appearing in S and, similarly, we denote by
Ap ={y—ax #k|y—x #k € F} C Ag the set
of atoms of any I € C.

Moreover, we just write inequality when we do not care
if it is strict or not, and we still assume that any instance of
ESTP appearing in this paper has no dominated inequalities,
where, this time, an inequality y — = > k dominates an
inequality y — x <’ K if either & < &/, or >t is < and <’ is
<and k =k'.

Example 2. Let S = (X,C<,C.,C.) be the following
instance of ESTP: X := {x1, 29, x5, T4, 5, T6, X7},

CS = {(EQ — I S —2.271'3 — T2 S —3.5,%1 — X3 S 57,
x4 —x5 < 2,w5 —x7 < Loy — a6 < 6,26 — x4 < —9}
Co:={xg— a3 < —33,290 — x4 < —2}

Cyp={x¢—21# —9IN (x4 —27 #3 Ve —x5 #—7.14)}.

One could fairly wonder whether C< and C together
subsume C'_. It is true; indeed, any strict inequality of the
form y — x < k can be rewritten as a classic inequality
y— 2 < k plus an inequation y — x # k. The reason we also
support strict inequalities is because we want to explore their
structure without masquerading them as the composition of
different parts.

We now discuss three independent conditions to identify
inconsistent instances of ESTP. It will later turn out that any
instance of ESTP not affected by any of these conditions
is consistent. The notion of relaxation of an ESTP instance
helps to state these conditions.

Definition 3 (Relaxation of an ESTP instance). Let S =
(X,C<,C<,C%) be an instance of ESTP. The relaxation of
S is the following instance of STP R = (Xp,CRr), where
Cr=CcU{y—ax<k|ly—xz<kelC.}.

In other words, the relaxation of S keeps all non-strict in-
equalities and turns each strict inequality into a non-strict
inequality. Note that, by construction, R cannot have dom-
inated inequalities either. The relaxation of the instance in
Example 2 is R = (Xg, CR), where Xy, is the same of Ex-
ample 2 and C', is exactly the set C' of Example 1.

Lemma 1. Let S be an instance of ESTP and let G be
the constraint graph of its relaxation. If G has a negative-
weight cycle, then S is inconsistent.

Proof. A solution for S would also be a solution for R. This
cannot exist if G has a negative-weight cycle (by Theo-
rem 1).]

Figure 1 does not contain any negative-weight cycle.

Definition 4 (Arc color). Let S = (X,C<,C.,Cx) be an
instance of ESTP and G = (X, A,w) be the constraint
graph of its relaxation. We say that an arc (z,y) in G is
red if S contains the strict inequality y — z < w(x,y). A
path P, , is red if it contains a red arc.

That is, given an instance of ESTP .S, the red arcs in the
constraint graph of its relaxation G identify exactly strict
inequalities of S. In Figure 1, (23, 26) and (24, x2) are red
since {zxg — 3 < —3.3, 20 — x4 < —2} C C. in Ex-
ample 2. Red arcs allow for the definition of a condition to
discover other inconsistent instances of ESTP. To the best
of our knowledge, this condition has never been identified
before.

Lemma 2. Let S be an instance of ESTP and let G be the
constraint graph of its relaxation. If G has a zero-weight
cycle containing a red arc, then S is inconsistent.

Proof. Assume that S admits a solution § and let ¢ :=
((x1,22),...,(Te,xey1 = 1)) be a zero-weight cycle in
GRr where (x1,x9) is a red arc. Then §(z2) — 0(x1) <
w(xy, x2) and 6(x;41) — 0(x;) < w(xy;, xi41), for every
1 = 2,...,e. Summing up these inequalities (one for every
arc in c), the valuations of ¢ on the e nodes simplify away
and we end up with the contradiction 0 < 0. O

Figure 1 contains two zero-weight cycles: ¢; :=

<($1,$2), (l‘g,l‘g), ($3,$1>> and Cy 1= <(.I'4,J}6), (1’6,1‘7),
(z7,25), (x5,24)). Anyway, none of them contains red arcs.

We now provide the third (and last) condition to identify
inconsistent instances of ESTP.

Definition 5 (Hopeless formula). Let S = (X,C<,C.,
C) be an instance of ESTP and G i be the constraint graph
of its relaxation. A monotone formula F' € C is said hope-
less if F' is false under any Boolean evaluation that assigns
false to all y — x # k € Ap for which G contains the two
non-red weighted paths w(P,) = k and w(Py ;) = —k.

Lemma 3. Let S be an instance of ESTP. If S has a hopeless
Sformula, then S is inconsistent.

Proof. Let S = (X,C<,C<,Cx) be an instance of ESTP
and F' be a hopeless formula. Let A’ be the set of atoms
y —x # k of F' for which G contains the two non-red
weighted paths w(P, ,) = k and w(P, ;) = —k. Suppose
that S is consistent and let § be a solution for it. Then, ¢
must satisfy F. However, for each atom in A}; we have
that §(y) — d(z) = k because both §(y) — é(x) < k and
d(z) — 6(y) < —k hold. Therefore, none of these atoms can
be satisfied by §. But then, by definition of hopeless, § does
not satisfy F' either because, even if ¢ satisfies all remaining
atoms — and that is exactly why this check can be done in
polynomial time — £’ is still false under such an interpreta-
tion (contradiction).]

Consider the unique formula on inequations in Ex-
ample 2: x4 — x7 # 3 is the unique atom for
which Figure 1 contains the two non-red weighted paths
w(((z7,25), (¥5,24))) = 3 and w(((w4, w6), (w6, 77))) =
—3. Thus, any possible solution ¢ (if any exists) will not sat-
isfy that atom. Anyway, that formula is not hopeless since
its remaining atoms could still make it true.

To sum up, an inconsistency certificate for an instance S
of ESTP is either a negative-weight cycle in Gy or a zero-
weight cycle containing a red arc in G or a hopeless for-
mula in .S. We are finally in position to define consistency.

Theorem 2. An ESTP instance is consistent iff none of the
conditions of Lemma 1, Lemma 2 and Lemma 3 applies.

Proof. Let S = (X,C<,C<,Cx) be an instance of ESTP.
(=) If S is consistent, then none of the conditions of
Lemma 1, Lemma 2 and Lemma 3 applies. In fact, if any
did, S would be inconsistent.
(<) If none of the conditions of Lemma 1, Lemma 2 and
Lemma 3 applies, then S is consistent. To prove it, we build
a mapping : X — R as follows:

1. Let 7 be a feasible potential for the constraint graph G'r
of the relaxation of S.

Let Gy := (X, A, w’) be the reweighted graph obtained
from G where w'(z,y) := w(x,y) + 7(x) — 7 (y) for
each (z,y) € A.

. Let A4g == {(z,y) | (z,y) € A, w'(z,y) = 0} be the
subset of zero-weight arcs of G5 and let Dy := (X, Ao)
be the corresponding directed acyclic graph (DAG). Note
that a cycle in Dy is a zero-weight cycle in both G'r and
G’ since the reweighting operation maintains shortest-
paths and cycle weights.

2.

11916

Let P := {X1,..., X|p|} be the partition of X coincid-
ing with the set of strongly connected components (SCCs)
of Dy. Note that each SCC is a rigid component. That is,
a set of nodes such that, once the value of one of these
nodes is fixed, so are the values of all the other nodes in
the same component.

. Let Dp := (P, Ap) be the DAG of the SCCs of D where
Ap = {(Xl,Xj) | Xi,Xj e P,X; 7£ XJ El(x,y) €
A(),.%‘ € Xi,y S XJ}

min
y—a<k€Ags,
|k+7(x)—7(y)|>0
[X]

min | 1, |k + m(z) — m(y)|
Lete :=
7. LetT = (Xq,...
Define ¢ as follows:
§(z) == m(x) + Oe

o(z) = m(x) + le

,Y‘pQ be any topological sort of Dp.

for each x € Y|7>|
for each x € Y|'p|_1

0(z) = m(x) + foreach x € X;.

We claim that 0 is a solution for .S. Note that we do not need
to check atomic constraints involving variables in the same
SCC. Indeed, for each y — = <1 k € Ag with x, y in the i-th
SCC, by letting ; := (|P| — i)e, it holds that:

(IP] = 1)e

7(y) —7w(x) <k < n(y) —w(z) +e <k + e
& (m(y) +ei) — (m(x) +ei) >k
< 0(y) —d(x) =k

Notice that, due to Lemma 1 and Lemma 2, if > is < or
<, then the atom always holds. Instead, if > is #, then the
atom might also not be satisfied; in such a case it must be-
long to some formula F' which has some other atom satisfied
(otherwise Lemma 3 would have applied).

Therefore, what we are really left to prove is that any atom
y—x <k € Ag, with y and x belonging to two different
SCCs, is satisfied by ¢. Let X; and X; be two different SCCs
with ¢ < j in the topological sort T'. Let ; := (|P| — i)e
and € := (|P| — j)e be the distances of from = for each
x € X; and for each y € X, respectively.

For each type of atom (i.e., for each <), we consider its
two possible orientations: the right one from X; to X; and
the left one from X; to X;. We rely on the fact that £; < &5,
since ¢ < j. We start by considering the right oriented atoms,
i.e., those of the form y — = < k.

Case y — x < k. We highlight that 7(y) — 7(z) < k holds.
If we substitute 6(y) — 7(y) for €; and §(x) — 7(x) for
€;, we obtain 6(y) — 7(y) < 6(z) — m(x) and thus §(y) —
0(z) <m(y) —n(z) < k.

Case y — x < k. Same of Case y — x < k.

Case y — x # k. We have two cases:

o If m(y) — w(x) = k, then, by substituting d(y) — 7 (y)
for e; and 6(z) — m(z) for €;, we obtain 6(y) — 7 (y) <
6(z) —m(x), implying 6(y) —0(z) < 7(y) —7(x) =k

0/0.02/9.02 —2.2/—2.18/6.82 0/0/9

(zopin(a2)—=
0
0
—5.71-5.68/3.32 —9/-9/0 —3/-3/6
(+1e) (+0¢)

Figure 2: Graphical construction of the solution § for the
instance in Example 2. Node labels have the form 7/ /§+9,
where 7 (in gray) is the feasible potential, ¢ (in black) is the
solution and § + 9 (in green) is the rigidly shifted value.

* Otherwise m(y)—m(x) # k;since |k+7(z)—m(y)| > 0
ande;—e; < 0,itholds thate;—e; < |k+m(z)—7(y)|.
By substituting §(y) — m(y) for ¢; and §(x) — w(x) for
gi, we get6(y)—m(y)—0(x)+m(x) < [k+m(z)—m(y)].
By solving the modulus, we get that:

- Ifk+7(x) —n(y) >0, then 6(y) — 6(x) < k.

- Otherwise k + m(z) — m(y) < 0, and then d(y) —

0(z) < =k +2(n(y) — m(x)) # k.

Then, we consider the left oriented atoms, i.e., z — y < k.

Case x — y < k. We highlight that 7(z) — m(y) < k. In
fact, if w(z) — m(y) were equal to k, there would exist
a zero-weight arc (y, z) in the reweighted graph G’; and
therefore an arc (X, X;) in the DAG of the SCCs Dp,
contradicting the topological sort 7. Since k + 7(y) —
m(x) > 0ande; —&; < 0, itholds thate; —&; < k +
7(y)—7(z). By substituting 6 (z) — () for g; and §(y) —
m(y) fore;, we get 6 (z)—m(z)—d(y)+m(y) < k+m(y)—
() which implies d(x) — d(y) < k

Case x — y < k. Same of Case x — y < k (once again
m(x) — m(y) = k cannot hold, otherwise the topological
sort 1" would be contradicted).

Case x — y # k. We have two cases:

e If m(z) — w(y) = k, then by substituting 6(x) — 7(x)
for e; and 6(y) — w(y) for £;, we obtain 6(y) — m(y) <
6(z) —m(x) implying §(z) — 6(y) > m(x) —7(y) = k.

* Otherwise m(x)—7(y) # k;since |k+7(y)—7(z)| > 0
ande;—e; < 0,itholds thate;—e; < |k+7(y)—m(z)|.
By substituting §(y) — 7(y) for &; and 6(x) — 7(x) for
g5 we get6(y)—m(y) =0 (z)+m(z) < [k+m(y)—m(z)].
By solving the modulus, we get that:

- Ifk+7(y) — w(x) > 0, then §(y) — d(z) < k +

2(m(y)—m(x)) and thus § (2) = (y) > —k+2(7(z)—
m(y)) # k.
- Otherwise k — 7(y) + 7(z) < 0, then 6(y) — d(x) <
—k and thus 6(x) — d(y) > k
OJ

11917

Algorithm 1: ESTP solver

Input: An instance S = (X, C<,C,Cx) of ESTP.

Output: A solution ¢ if S is consistent; inconsistent
otherwise.

if Lemma I applies then return inconsistent;

if Lemma 2 applies then return inconsistent;

if Lemma 3 applies then return inconsistent;

Compute § as discussed in the proof of Theorem 2;

return ¢;

L7 I N SR S

Our ESTP solver is summarized in Algorithm 1.

For the instance S in Example 2, Figure 1 shows a fea-
sible potential 7 for its relaxation. Figure 2 represents the
reweighted graph of that in Figure 1 (considering all ap-
pearing arcs). The same Figure also shows the remaining
DAGs (ignoring all weights). Specifically, Dy is the DAG
consisting of all snake-pattern edges (with its SCCs high-
lighted in gray), whereas Dp is the DAG having as nodes
the sets Xy := {Il,llig,xg} and Xy = {I4,SE5,I6,I7}
and as unique arc the snake-pattern red one. We consider
the topological sort T := (X3, X3). Regarding all atoms
of S, the smallest |k + m(x) — 7(y)| > 0 is due to the atom
r¢ — x5 # —7.14 in the formula on inequations and its value
is 0.14. Therefore, € := 0.02. We compute the mapping J as
follows: we set 0(z) := m(z) + Oe for each z € X5 and we
set §(x) := m(x) + le for each v € X;.

The reader can check that 6(x1) := 7(z1) + 1le = 0.02,
0(z2) = m(xg) + le = —2.18, 0(x3) := w(x3) + le =
—5.68, 0(x4) := m(x4) + 0 = 0, §(w5) := w(x5) + 0 =
—2,0(z6) := w(x6)+0e = =9, and §(x7) := w(x7)+0e =
—3 is a solution. In case, § can be rigidly shifted by 9 to
make it non-negative.

Theorem 3. Let S = (X,C<,C.,Cx) be an instance
of ESTP. Let n := ,m = |C<| +|C<| and h :
>_rec, |Ar|. Then, Algorithm 1 runs in time O(nm + h).

Proof. We analyze the steps needed by Algorithm 1. It takes
O(nm) to compute a feasible potential of G i or prove that
none exists (i.e., checking Lemma 1). This can be done, for
example by a run of the Bellman-Ford algorithm. Reweight-
ing G to obtain G’ costs O(m) and the computation of D
is O(n + m). Flndlng the SCCs of Dy, along with comput-
ing a correspondence allowing each node to retrieve its SCC,
takes O(n + m) (Gabow 2000). Checking Lemma 2 corre-
sponds to verify whether there exists any red arc in some
SCC. That is, for each y — x < k we just need to check
if the SCCs of y and x are the same (because any cycle in
that SCC including that arc has weight zero). Thus, this step
takes O(m). Likewise, checking Lemma 3 takes O(h) be-
cause we need to evaluate each /' € C' under the interpre-
tation that sets to false all y — x # k € Ap if and only if y
and x are in the same SCC and 7 (y) —7(«) = k. Computing
Dp takes O(n+m). To compute &, scanning all atoms of .S
takes O(m + h). Finding a topological sort takes O(n + m)
and finally computing a solution ¢ from the potential 7 takes
O(n) (also when we make ¢ non-negative by rigid shifting).
Overall, the complexity is O(nm + h). O

When dealing with strict inequalities only, then & = 0 and
the bound boils down to O(nm). Notice that this is the time
that Bellman-Ford needs to solve even a simple instance of
STP. This is faster than (Gerevini and Cristani 1997) as their
algorithm is based on Floyd-Warshall, whose complexity is
O(n?) > O(nm) regardless of the density of the graph.

Experimental Evaluation

In this section we provide a proof-of-concept implementa-
tion of our approach, comparing several variants of shortest
paths algorithms. Then, we encode our model as a QF_RDL
formula since it is well-known that satisfiability of conjunc-
tions of atoms y — x > k for e {<, <} is tractable. There-
fore, this experimental evaluation offers a fair comparison?.

As seen in Theorem 3, computing a feasible potential
function 7 (or proving that none exists checking Lemma 1)
is the most expensive step and costs O(mn). This is a
strongly-polynomial bound, that does not depend in any way
on the magnitude of the numbers in the input. Actually, these
could be rather clumsy objects that we could prefer to let an
oracle to manage. Still, the problem would be solved in at
most O(mn) calls to the oracle.

Although asymptotically optimal, Bellman-Ford with
negative-cycle detection (from now on, BFTO) can be out-
performed by other algorithms with the same time com-
plexity but still better in practice: (Goldberg and Radzik
1993) combined with (Goldberg 1995) admissible-graph
search negative-cycle detection algorithm (from now on,
GORC); Bellman-Ford-Moore with (Tarjan 1981) subtree
disassembly negative-cycle detection algorithm (from now
on, BFCT). The interested reader is referred to (Bellman
1958; Ford Jr 1956; Moore 1959; Cormen et al. 2009) and
to (Cherkassky and Goldberg 1999) for more details about
the Bellman-Ford algorithm and for a survey about negative-
cycle detection algorithms, respectively.

Another nontrivial step of our approach is the computa-
tion of SCCs; for that, we rely on (Gabow 2000), the fastest
SCC algorithm according to (Alshomrani and Igbal 2012).

As a result, we have implemented three different versions
of our approach using BFTO, GORC and BFCT, respec-
tively. To get an idea about their performance, we have also
implemented (Dutertre and de Moura 2006)’s approach to
handle strict inequalities through the symbolic computation
of ¢ values. Again, we consider the three variants offered by
BFTO, GORC and BFCT, since also (Dutertre and de Moura
2006) executes a non-modified SSSP algorithm combined
with a negative-cycle detection procedure. Moreover, we in-
cluded all SMT solvers that competed in the /5th Interna-
tional Satisfiability Modulo Theories Competition — SMT-
COMP 2020 — for QF_RDL (Model Validation Track and
Single Query Track). These were: Yices2 v2.6.2 (Dutertre
2014), CVC4 v1.8 (Barrett et al. 2011), MathSATS v5.6.3
(Cimatti et al. 2013), z3 v4.8.8 (De Moura and Bjgrner
2008), veriT v2016 (Bouton et al. 2009) and SMTInterpol
v2.5 (Christ, Hoenicke, and Nutz 2012).

To encode an instance S = (X,C<,C<,C) of ESTP,

*https://github.com/CALIPSO-UniVR/estp-aaai2021

11918

CPU Intel Core i7-6700K @ 4.00GHz
RAM 64 GB DDR4 @ 2133MHz
SSD Samsung SSD 850 EVO 1TB
0S Arch Linux — kernel 5.8.5-zen
CXXFLAGS -0O3 -march=native -std=c++17

Table 1: Benchmark environment.

we simply convert it into the QF_RDL formula:

N N v-—z<k N (F).

yfmngCS y—z<keCc FGC}A

y—x <k

Current experiments involve conjunctions of strict and
non-strict inequalities only, as this work is the first to prove
tractability of monotone Boolean formulae on inequations.
Therefore, we excluded formulae on inequations as the al-
gorithms facing them in QF_RDL are designed for NP-
complete problems.

We have defined four classes of instances, including hard
instances to provide various degrees of hardness and require
maximal work from all approaches, thus highlighting their
performance. We consider hard all consistent instances with
deep shortest-paths trees and all inconsistent instances with
few and long negative cycles. All classes of instances con-
tain an Hamiltonian zero-weight cycle, thus ensuring hard-
ness for consistent instances. Moreover, all instances contain
random edges, in proportion 8 to 1 with respect to the num-
ber of nodes, which do not form any negative cycle. Here
follows a description of the four classes:

HO000 are consistent instances with no further additions;

HO01 are inconsistent instances with a single negative cy-
cle with length equal to the 1% of the number of nodes;

HO025 are inconsistent instances with a single negative cy-
cle with length equal to the 25% of the number of nodes;

H100 are inconsistent instances with a single Hamiltonian
negative cycle.

Starting with number of nodes n = 32, for each class 8 in-
stances are generated and solved by each variant, computing
the average of the running times. At the end of each itera-
tion, n is multiplied by /2 and the process is repeated, until
the execution takes more than 100 seconds. Table 1 specifies
the hardware and software of the machine we used.

Benchmark results for HO00, HO01, H025 and H100 in-
stance classes are shown in Figure 3. The prefix OUR_ refers
to our approach, whereas the prefix DAM._ refers to that in
(Dutertre and de Moura 2006). Yices2 has been tested twice
with the two available solvers: simplex (_.SIMPLEX) and
Floyd-Warshall (_FW) (Dutertre 2014).

We can see that our approach, in both variants OUR_BFCT
and OUR_GORC, is always faster on any input class. Regard-
ing OUR_ and DdM. implementations, this is to be expected,
since (Dutertre and de Moura 2006)’s symbolic approach
suffers from the overhead of doing the symbolic € computa-
tions, whereas our approach, being dominated by the SSSP
and negative-cycle detection step, does not incur in any over-
head and the time margin gained is enough to cover the re-
maining steps. Also towards SMT solvers, OUR_BFCT and

10?

-
)

— cveca
-~ DdM_BFCT
--- DdM_BFTO
--- DdM_GORC
—— MATHSATS
—— OUR_BFCT
—— OUR_BFTO
—— OUR_GORC
SMTINTERPOL
VERIT
--- YICES2_FW

Time (seconds)

H
2

1072

— 73

— YICES2_SIMPLEX

Time (seconds)

10?

— cvea
-~ DdM_BFCT
--- DdM_BFTO

- DdM_GORC
—— MATHSATS
—— OUR_BFCT

—— OUR_BFTO
—— OUR_GORC
SMTINTERPOL
VERIT
YICES2_FW
—— YICES2_SIMPLEX
—z3

104 10° 108

n

103

(a) HOO0

104 10° 108

n

10%

(b) HOO1

102

-
2

— cveca
-~ DdM_BFCT
--- DdM_BFTO
--- DdM_GORC
—— MATHSATS
—— OUR_BFCT
—— OUR_BFTO
—— OUR_GORC
SMTINTERPOL
VERIT
--- YICES2_FW

Time (seconds)

,_.
5
0

1072

— 73

— YICES2_SIMPLEX

Time (seconds)

10?

— cvea
-~ DdM_BFCT
--- DdM_BFTO
DdM_GORC
—— MATHSATS
—— OUR_BFCT

—— OUR_BFTO

—— OUR_GORC
SMTINTERPOL
VERIT
YICES2_FW
—— YICES2_SIMPLEX
—z3

104 108

(c) HO25

104 108

(d) H100

Figure 3: Benchmark results. All plots are in logarithmic scale.

OUR_GORC demonstrate their competitiveness, being able to
solve instances up to n = 2965821 within 100 seconds. In-
stead YICES2_SIMPLEX, which proved to be the fastest
among the SMT solvers we considered, fails to solve in-
stances with more than 8192 (H000, H025 and H100) and
5793 (H001) variables within 100 seconds.

Conclusions and Future Work

We defined the Extended Simple Temporal Problem
(ESTP) by generalizing the class of constraints studied by
Koubarakis in (Koubarakis 1992) to consider monotone
Boolean formulae on inequations. We analyzed the struc-
ture of the resulting problem. Given an instance of ESTP,
we provided three conditions to detect inconsistency: the
first condition looks for negative-weight cycles in the con-
straint graph of the relaxation of the instance; the second
one searches for zero-weight cycles containing red arcs (i.e.,
strict inequalities) in the same graph; the third condition
looks for hopeless formulae on inequations. An instance is
consistent iff none of these three applies. Checking these
conditions results in an O(nm + h) algorithm to solve any

11919

ESTP instance, where n is the number of variables, m is the
number of inequalities and h is the number of inequations
appearing in all monotone Boolean formulae. We carried out
a fully-reproducible experimental evaluation focused on in-
stances of ESTP which currently considers strict and non-
strict inequalities. This was motivated by the possibility
of making a comparison with several variants of SSSP al-
gorithms and also state-of-the-art SMT solvers supporting
QF_RDL, in which satisfiability of conjunctions of inequali-
ties is known to be tractable. Overall, our approach can han-
dle instances close to 3 million variables within 100 seconds,
while all SMT solvers hit this timeout on much smaller in-
stances (at best 8192 variables). Our results suggest to em-
ploy BFCT or GORC as core solving algorithms.

As future work, we plan to extend our experimental eval-
uation to also consider monotone Boolean formulae on in-
equations by providing a reference dataset.

Acknowledgments

This work was partially supported by MIUR, Project Ital-
ian Outstanding Departments, 2018-2022, and by INdAM,

GNCS 2020, Project Strategic Reasoning and Automated
Synthesis of Multi-Agent Systems.

References

Alshomrani, S.; and Igbal, G. 2012. Analysis of strongly
connected components (SCC) using dynamic graph repre-
sentation. International Journal of Computer Science Issues
(1JCSI) 9(4).

Armando, A.; Castellini, C.; Giunchiglia, E.; and Maratea,
M. 2005. The SAT-based Approach to Separation Logic.
Journal of Automated Reasoning 35(1): 237-263.

Barrett, C. W.; Conway, C. L.; Deters, M.; Hadarean, L.;
Jovanovic, D.; King, T.; Reynolds, A.; and Tinelli, C. 2011.
CVC4. In CAV 2011, volume 6806 of Lecture Notes in Com-
puter Science, 171-177. Springer.

Barrett, C. W.; Sebastiani, R.; Seshia, S. A.; and Tinelli, C.
2009. Satisfiability Modulo Theories. In Handbook of Sat-
isfiability, volume 185 of Frontiers in Artificial Intelligence
and Applications, 825-885. 10S Press.

Bartak, R.; Morris, R. A.; and Venable, K. B. 2014. An Intro-
duction to Constraint-Based Temporal Reasoning. Synthesis
Lectures on Atrtificial Intelligence and Machine Learning.
Morgan & Claypool Publishers.

Bellman, R. 1958. On a routing problem. Quarterly of ap-
plied mathematics 16(1): 87-90.

Bouton, T.; Caminha B. de Oliveira, D.; Déharbe, D.; and
Fontaine, P. 2009. veriT: An Open, Trustable and Efficient
SMT-Solver. In Automated Deduction — CADE-22, 151—
156. Springer Berlin Heidelberg.

Broxvall, M. 2002. A Method for Metric Temporal Reason-
ing. In AAAI/IAAI 2002, 513-518.

Carbonnel, C.; and Cooper, M. 2015. Tractability in Con-
straint Satisfaction Problems: A Survey. Constraints An Int.
J. 21(2): 115-144.

Cherkassky, B. V.; and Goldberg, A. V. 1999. Negative-cycle
detection algorithms. Mathematical Programming 85(2).

Christ, J.; Hoenicke, J.; and Nutz, A. 2012. SMTInterpol: An
Interpolating SMT Solver. In Donaldson, A. F.; and Parker,
D., eds., SPIN 2012, volume 7385 of Lecture Notes in Com-
puter Science, 248-254. Springer.

Cimatti, A.; Griggio, A.; Schaafsma, B.; and Sebastiani, R.
2013. The MathSATS SMT Solver. In Piterman, N.; and
Smolka, S., eds., Proceedings of TACAS, volume 7795 of
LNCS. Springer.

Cooper, M. C.; Maris, F.; and Régnier, P. 2013. Relaxation
of Temporal Planning Problems. In TIME 2013, 37-44.
IEEE Computer Society.

Cormen, T. H.; Leiserson, C. E.; Rivest, R. L.; and Stein, C.
2009. Introduction to Algorithms, Third Edition. The MIT
Press, 3rd edition.

De Moura, L.; and Bjgrner, N. 2008. Z3: An Efficient SMT
Solver. In TACAS 2008, TACAS’08/ETAPS’08, 337-340.
Berlin, Heidelberg: Springer-Verlag.

11920

de Moura, L.; Dutertre, B.; and Shankar, N. 2007. A Tutorial
on Satisfiability Modulo Theories. In CAV ’07, volume 4590
of LNCS, 20-36. Springer-Verlag.

Dechter, R.; Meiri, I.; and Pearl, J. 1991. Temporal con-
straint networks. Artificial Intelligence 49(1): 61 —95.

Dutertre, B. 2014. Yices 2.2. In CAV 2014, volume 8559 of
Lecture Notes in Computer Science, 737-744. Springer.

Dutertre, B.; and de Moura, L. 2006. A Fast Linear-
Arithmetic Solver for DPLL(T). In Computer Aided Veri-
fication, 81-94. Springer Berlin Heidelberg.

Ford Jr, L. R. 1956. Network flow theory. Technical report,
Rand Corp Santa Monica Ca.

Gabow, H. N. 2000. Path-based depth-first search for strong
and biconnected components. Information Processing Let-
ters 74(3): 107 — 114.

Gerevini, A.; and Cristani, M. 1997. On Finding a Solution
in Temporal Constraint Satisfaction Problems. In IJCAI ’97,
1460-1465. Morgan Kaufmann.

Goldberg, A. V. 1995. Scaling algorithms for the shortest
paths problem. SIAM Journal on Computing 24(3): 494—
504.

Goldberg, A. V.; and Radzik, T. 1993. A heuristic improve-
ment of the Bellman-Ford algorithm. Applied Mathematics
Letters 6(3): 3 - 6.

Koubarakis, M. 1992. Dense Time and Temporal Con-
straints with !=. In (KR’92), 24-35. Morgan Kaufmann.

Montanari, A.; Navarrete, I.; Sciavicco, G.; and Tonon, A.
2012. A tractable formalism for combining rectangular car-
dinal relations with metric constraints. In ICAART 2012,
volume 1, 154—163. SciTePress.

Moore, E. F. 1959. The shortest path through a maze. In
Proc. Int. Symp. Switching Theory, 1959, 285-292.

Schwalb, E.; and Vila, L. 1998. Temporal Constraints: A
Survey. Constraints 3(2): 129-149.

Stergiou, K.; and Koubarakis, M. 2000. Backtracking al-
gorithms for disjunctions of temporal constraints. Artificial
Intelligence 120(1): 81-117.

Tarjan, R. E. 1981. Shortest paths. Tech reports .

Vila, L. 1994. A Survey on Temporal Reasoning in Artificial
Intelligence. AI Commun. 7(1): 4-28.

