
European Journal of Operational Research 316 (2024) 295–309

A
0
n

Contents lists available at ScienceDirect

European Journal of Operational Research

journal homepage: www.elsevier.com/locate/eor

Innovative Applications of O.R.

Multi-period time window assignment for attended home delivery
Jean-François Côté a,∗, Renata Mansini b, Alice Raffaele c

a CIRRELT, Université Laval, 2325 Rue de la Terrasse, Québec, G1V 0A6, Canada
b Department of Information Engineering, University of Brescia, Via Branze 38, Brescia, 25123, Italy
c Department of Mechanical, Energy and Management Engineering, University of Calabria, Via Pietro Bucci – Cubo 46/C, Arcavacata di Rende, 87036, Italy

A R T I C L E I N F O

Keywords:
Transportation
Time window assignment
Vehicle routing problem
Stochastic programming
Sample average approximation method

A B S T R A C T

We study a multi-period stochastic variant of the Time Window Assignment Vehicle Routing Problem, where
customers’ demands, locations, and service times are uncertain. Customers are partitioned into geographical
zones, each of which has to be visited a predetermined number of times over a planning period of several days.
Whenever a zone is visited, a time window is assigned. Time windows are decided before knowing customers
and their demands. A fleet of homogeneous vehicles is available to serve customers each day. At a tactical level,
the problem looks for a static time window assignment that minimizes the expected traveling costs plus the
expected penalty costs for unserved customers. We propose a two-stage formulation and a solution approach,
which relies on the Sample Average Approximation Method, while encompassing a perturbation method to
assign time windows in the first stage and an Adaptive Large Neighborhood Search to optimize routes in the
second stage. We experimentally evaluate three instance sets, including real ones from a Canadian company,
comparing our results to lower bounds from the exact solution of a deterministic equivalent formulation over
a finite number of scenarios. Our method outperforms the manual approach used by the company.
1. Introduction

Time is critical for last-mile delivery. Companies optimize costs
while ensuring on-time delivery to meet customer demands. An ef-
fective routing schedule is a priority, though optimal schedules are
complex to build without complete information on customers’ location
and demand. Unfortunately, in many real applications, such informa-
tion is not available in advance, but companies may have historical
data to produce useful statistics Thus, finding an optimal schedule is
complex, and the goal turns into looking for a schedule that works quite
well on every occasion.

In some applications, customers explicitly select preferred delivery
windows and are willing to pay more to get them, while others like
furniture buyers mainly care about the service day and are less sensi-
tive to precise time windows. In this paper, we analyze the problem
encountered by a Canadian retailer that sells and delivers furniture
and appliances in the regions centered around Edmonton and Calgary
(about 460 customers served per week in each region). The company
finds it reasonable and convenient to visit customers living in the
same neighborhood on the same day, possibly avoiding going back
to the same place at another moment. For this reason, the company
has classified customers based on their residential zone (zip code).
Currently, the company provides its customers with weekly schedules
that specify the days of the week when the service can be accomplished

∗ Corresponding author.
E-mail address: jean-francois.cote@fsa.ulaval.ca (J.-F. Côté).

in each zone. Once the purchase is concluded, customers have the
flexibility to select a delivery date from the available options. Two
days before the chosen delivery date, customers receive an automated
phone call, informing them about the designated delivery time window,
typically spanning three hours on the selected day.

The company would like to improve customer satisfaction by par-
tially modifying the service. One of the most unsatisfactory aspects
related to service is that customers cannot select their delivery time
window. Thus, the company aims to define a new service policy where
a predefined number of time windows are assigned to each zone in
advance so that customers can express their preferences. Improving the
service policy is complicated by a demand that, according to historical
data, undergoes strong variations with customers varying positively or
negatively by over 100 units week to week. The new service will be
organized over a defined time horizon (typically a week). To meet a
high service level, the company aims to have multiple visits to the
same zone throughout the planning period, with the condition that
each zone is visited no more than once per day. Striking the right
balance is crucial. The company seeks to have a sufficient number of
visits to enhance customer satisfaction while avoiding an excessively
high frequency of visits that could fragment customer requests and
drive up travel expenses. To determine this ideal number, the company
intends to leverage historical data about prior purchases and deliveries
https://doi.org/10.1016/j.ejor.2024.01.021
Received 18 January 2023; Accepted 18 January 2024
vailable online 20 January 2024
377-2217/© 2024 The Authors. Published by Elsevier B.V. This is an open access art
c-nd/4.0/).
icle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

https://www.elsevier.com/locate/eor
https://www.elsevier.com/locate/eor
mailto:jean-francois.cote@fsa.ulaval.ca
https://doi.org/10.1016/j.ejor.2024.01.021
https://doi.org/10.1016/j.ejor.2024.01.021
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejor.2024.01.021&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

J.-F. Côté et al.

(
f
a
t
r
d
p
f
d
g
A
n
t
t
c
o
m
h
o
e
s
I
t
s
d

European Journal of Operational Research 316 (2024) 295–309
in each zone. Under the revised service policy, unlike before, customers
will decide their delivery day by evaluating Under the revised ser-
vice policy, unlike before, customers will decide their delivery day
by evaluating the available combinations of delivery days and time
windows offered for their specific zone when they place an order. In
more detail, customers will rank the available delivery days based on
their preferences. Once the time windows are allocated to each zone,
customers will be served on their most preferred delivery day, assuming
that a time window was assigned on that day.

Currently, the company manually decides delivery schedules by
using maps and push pins with a process requiring the work of several
employees for many working days. For this reason, the created schedule
is usually kept for months. This causes serious inconveniences, making
the schedule insensitive to changes in demand: a strong demand growth
usually causes a delay in schedule planning, thus reducing customer sat-
isfaction, whereas a demand decrease could make the current planning
inefficient, which, in turn, could increase costs. The company wants
to take a step forward by replacing the manual planning process with
a computer-based one focused on advanced algorithms. This tool will
help the company quickly modify the current schedule or even change
it every week by overcoming the main drawbacks of the old procedure.

To tackle all these requirements, we define a stochastic multi-
period variant of the Time Window Assignment Vehicle Routing Problem
TWAVRP) introduced by Spliet and Gabor (2015). Our problem differs
rom the latter in many aspects. Firstly, in our case, the geographical
rea of interest is partitioned into zones defined by zip codes. Moreover,
ime windows are assigned to zones before knowing not only customers’
equests but also their locations and service times. The assignment
ecides the distribution of time windows in the working days of the
lanning period. If a customer cannot be served by the company’s
leet of vehicles, a penalty corresponding to the cost of a backup
elivery done in outsourcing is paid. Given the zones into which the
eographical area is divided, the Stochastic Multi-period Time Window
ssignment Problem (SMTWAP) decides how to assign a predefined
umber of time windows to each zone while minimizing the expected
raveling costs required to visit the customers within the allocated
ime windows, plus expected penalty costs associated with unserved
ustomers. Regarding constraints, the decision maker decides the set
f possible time windows for each zone by first establishing how
any times each zone can be visited during the planning period using
istorical data. Past information is provided as probability distributions
n the number of customers, their demands, and service times for
ach zone. These allow the creation of a nearly infinite number of
cenarios representing realizations of the described random variables.
n each scenario, customers’ placing requests are known, along with
heir preferred days based on the time windows available for their
pecific zones on those days. A fleet of vehicles is available to make
eliveries every day. No cancellation or rescheduling is allowed.

This paper provides the following contributions:

1. New problem. The stochastic aspects of this problem pertain to
the number of customers, their locations, demands, and service
times, all uncertain. Although previous research has examined
each of these aspects individually or, at most, in pairs, there
has not been a publication that incorporates all of them together
while also considering the geographical feature of dealing with
multiple zones and the multi-period nature of the time window
assignment problem, and the presence of a penalty cost in the
case customers are not served by the fleet. To tackle the problem,
we introduce a two-stage stochastic formulation with general
recourse.

2. First-stage control of the zone visit frequency. The delivery com-
pany wants to manage the frequency of visits to each zone
throughout the planning period. In our approach, the number of
visits per zone is thus a known value established by the company

and influenced not only by immediate economic considerations

296
but also by other factors that may affect the company’s long-
term relationship with its customers. In the competitive furniture
industry, the company acknowledges that customer satisfaction
and loyalty are critical for success. These can be improved by
favoring some zones more than others controlling the number
of visits per zone.

3. Centrality of customers. Although the time windows are assigned
to residential zones, the routing problem is based on customer
locations rather than just zones, which sets this problem apart
from the existing literature.

4. Second-stage rank-based assignment of customers to days. When
customers make their purchases, they express their preferences
by ranking the delivery days in a specific order. Then, when
time windows are allocated to the zones, the routing process of
the second stage assigns to each customer the time window in
his/her highest-ranked day among those available. This aspect
sets the problem apart from other time window assignment
problems and introduces the concept of prioritizing ranked time
windows (as discussed, e.g., by Farias, Jagabathula, & Shah,
2013).

5. Effective solution methodology. Given the complexity of the prob-
lem, we develop a Sample Average Approximation Method (SAAM)
to approximate our stochastic program. It works by solving a
series of SMTWAP problems, where each problem, called sample
average approximating (SAA) problem, uses a small random
sample of scenarios and is solved using a meta-heuristic. This en-
ables us to provide solutions that are efficient and effective when
compared with the deterministic equivalent formulation solved
using CPLEX on small-size instances and substantially improve
the ones obtained by the manual approach of the company.

The paper is organized as follows. In Section 2, we discuss the main
literature on attended home delivery problems and known variants of
TWAVRP by also providing a summarizing table highlighting contri-
butions and research gaps. Section 3 provides the formal description
of SMTWAP, its two-stage definition, and its deterministic equivalent
formulation. In Section 4, we describe the SAAM-based methodology.
Section 5 provides details on the perturbation procedure used to solve
the first stage and on an Adaptive Large Neighborhood Search (ALNS)
framework used to tackle the routing problem in the second stage.
In Section 6, first, we outline the design of the computational study,
showcase extensive results, and derive some managerial insights, in-
cluding an analysis of the solution stochastic value and quality of the
service. Then, we delve into the results obtained on the real instances
provided by the Canadian company. Finally, Section 7 draws the main
conclusions.

2. Literature review

The primary challenge in Attended Home Delivery (AHD) problems
revolves around determining the optimal timing for customer service.
To the best of our understanding, one of the earliest studies in this area
is due to Madsen, Tosti, and Vælds (1995), where a company offers
a dynamic daily repair service. Customers become known only when
they call for assistance and the company has to specify a suitable time
window to perform the service. Lin and Mahmassani (2002) focus on
the influence of customer demand and their spatial distribution on the
number of depots and vehicles used, as well as the management of time
windows on both tactical and operational levels.

In recent literature, many contributions have been published on
both static management of time windows (roughly estimating routing
efforts, e.g., by imposing a maximum number of requests for each time
window) and dynamic one (adjusting partial schedules according to
time-dependent and stochastic travel time information). The static Time
Slot Management (TSMP) in AHD, tackled by Agatz, Campbell, Fleis-

chmann, and Savelsbergh (2011), deals with time windows offered in

J.-F. Côté et al.

z
p
s
p
g
z

European Journal of Operational Research 316 (2024) 295–309
the zip codes (zones) of a service region. Differently from our problem,
an expected number of customers is associated with each geographical
zone, and only a single time window for each zip code is allocated.
Demand is measured in terms of customer orders in a planning period of
a shift (a morning or an afternoon), therefore the expected amount for
each zip code is known. Time windows cannot overlap among different
zones. To minimize the expected delivery costs, the authors use two
different approaches a continuous approximation model, to estimate
the delivery cost of a given time window schedule and an integer
programming model with approximated delivery costs by grouping
customers of the same zip code. In both cases, vehicle routes to serve
customers over the zones are not explicitly considered.

The TSMP has also been formulated as a Periodic VRP (PVRP) in
Hernandez, Gendreau, and Potvin (2017), where each zone has a ser-
vice frequency and demand is known. The goal is to define a schedule
by assigning zones to vehicles on any given day of the planning period
minimizing total travel costs. The authors propose a Tabu Search by
using simple moves, such as the removing a zone from a route in a
certain period and the reinsertion in another route.

The Time Window Assignment Vehicle Routing Problem (TWAVRP)
was defined by Spliet and Gabor (2015), and successively studied by
Spliet and Desaulniers (2015), Spliet, Dabia, and Van Woensel (2018),
and Dalmeijer and Desaulniers (2021). In these papers, the planning
period is a single day, customer locations are known, and only their
demand is stochastic. In Spliet and Gabor (2015), the authors establish
that time windows can start at any time within a predefined exogenous
time window decided by the customer. The TWAVRP is formulated as
a two-stage stochastic optimization: in the first stage, a time window is
assigned to every customer from the set of possible time windows; in
the second stage, after demand is known, vehicle routes are computed.
The authors propose a Column Generation algorithm to find lower
bounds by solving one pricing problem for every scenario and a branch-
and-cut-and-price algorithm based on the separation of different valid
inequalities. In the Discrete TWAVRP (Spliet & Desaulniers, 2015), for
each customer, there is instead a discrete set of candidate time windows
from which just one has to be selected. In Dalmeijer and Spliet (2018),
the authors present a compact formulation to speed up the previous
branch-and-cut (Spliet & Gabor, 2015) and solve larger instances. A
novel class of valid inequalities, the precedence inequalities, are also
discussed. Time-dependent travel times are considered in the variant
of TWAVRP presented by Spliet et al. (2018). Finally, in Dalmeijer and
Desaulniers (2021), the authors focus on the TWAVRP and propose a
branch-and-price-and-cut to eliminate orientation symmetry from the
search tree.

Subramanyam, Wang, and Gounaris (2018) propose a scenario de-
composition approach to include both continuous and discrete time
windows, adapting an algorithm developed for the Consistent VRP
(see Groër, Golden, & Wasil, 2009) to gain modularity and scala-
bility through a parallel implementation. Hoogeboom, Adulyasak,
Dullaert, and Jaillet (2021) formulate a robust version of the TWAVRP,
where routes and time window assignments are simultaneously com-
puted to minimize the expected travel time and the risk of violating
time windows. Jalilvand, Bashiri, and Nikzad (2021) take into ac-
count stochastic service times too but still deterministic locations,
whereas Yu, Shen, Badri-Koohi, and Seada (2023) deal with stochastic
locations, demands, and service times by considering one delivery area,
continuous time windows of varying duration, and cancellations. They
both provide a static and a dynamic version of the problem, formulating
the former as a two-stage program.

Time window preferences can also be influenced by the applica-
tion of incentives, as proposed originally by Campbell and Savelsbergh
(2005), to steer customers to select time windows so as to maximize
the overall profit (see, e.g., Campbell & Savelsbergh, 2006). Incentives
and differentiated rates are also used to cope with higher demand
in the late part of the day, making customers pay extra to get the

service as described by Ehmke and Campbell (2014). Furthermore, p

297
incentives can be exploited to increase the duration flexibility of time
windows without impacting the company’s profit. Köhler, Ehmke, and
Campbell (2020) consider a mixed set of short and long time windows.
Customers arrive in real-time, and, when they reveal their locations, a
set of time windows is computed and offered to them. The goal is to
maximize the number of accepted customers. In addition to the strategy
of just rejecting customers, one can model an outsourced backup service
by introducing suitable penalties to measure the corresponding cost
(see, e.g., Stenger, Vigo, Enz, & Schwind, 2013). About time window
width, Manerba, Mansini, and Zanotti (2018) analyze the negative
impact of restrictive time windows on the environment. Agatz, Fan, and
Stam (2021) investigate the effect of using green labels to encourage
customers to select time windows.

Table 1 presents an overview of the relevant attributes of the
SMTWAP alongside the principal aspects of pertinent works in the
literature. This allows for a comparative analysis of their main features
including the main focus (Time Window Assignment (TWA) or AHD); the
objective function (e.g., minimize total distance or maximize profit);
the problem type (static and/or dynamic), the planning period (one or
multiple periods); the geographical extension (one or multiple areas);
known or uncertain customer location, demand, service time, and
travel times, presence of customer preferences (Yes/No), time windows
information (continuous and/or discrete, their duration, hard and/or
soft), the use of scenarios, and the method developed (exact and/or
heuristic). From this comparison, we observe that no other work in
the literature addresses all the features of the SMTWAP. Indeed, we
innovate concerning these works since customers’ locations, demands,
and service times are unknown and since we consider multiple areas.
In particular, as in Spliet and Gabor (2015) and Spliet and Desaulniers
(2015), we also consider static management of time windows with
predefined widths. Moreover, we assume that a discrete set of candidate
time windows is available for each zone, but, differently from Spliet
and Desaulniers (2015), time windows are not associated with cus-
tomers but with zones. For this, the SMTWAP may seem similar to the
problem in Hernandez et al. (2017) but, in our case, customers’ orders
are supplied only once during the planning period and thus are not
periodic. Also, in Hernandez et al. (2017), the authors do not address
the construction of delivery routes based on customers’ orders but these
are seen as sequences of zones. Regarding the methodology, we take
into account multiple service areas and a planning period composed of
multiple periods. Finally, we integrate a complete recourse mechanism
to get always feasible solutions.

3. Problem formulation

Let 𝐷 = {1,… , 𝜏} be a discretized planning period of 𝜏 working days
(each one consisting of a predefined number of working hours) over
which the company organizes the delivery service. Customers, who are
not known in advance, are spread over a geographical area partitioned
into a set 𝑍 = {1,… , ℎ} of ℎ zones (e.g., zip codes or small areas). Each
zone 𝑧 ∈ 𝑍 has a set of candidate time windows 𝑊𝑧. Each time window
𝑤 is defined as a tuple (𝑙𝑤, 𝑢𝑤, 𝑑𝑤, 𝑧𝑤) where 𝑙𝑤 and 𝑢𝑤 are the starting
and ending times, whereas 𝑑𝑤 ∈ 𝐷 and 𝑧𝑤 are the day of the planning
period in which the time window is available and its zone, respectively.
Based on past experience, the decision maker sets a number 𝑛𝑧 of visits
for each zone 𝑧, corresponding to the selection of an equivalent number
of time windows to be scheduled over the planning period. We indicate
as 𝑊𝑧(𝑑) ⊆ 𝑊𝑧 the subset of candidate time windows of 𝑊𝑧 offered by
one 𝑧 on the day 𝑑. At most one window can be selected per zone
er day (every zone is visited at most once each day). We call zone
chedule the assignment of the time windows of a given zone over the
lanning period, and global schedule the set of all zone schedules. A
lobal schedule is feasible if it has exactly 𝑛𝑧 time windows per each
one 𝑧 scheduled over the planning period, with at most a time window

er day per zone.

J.-F. Côté et al.

t
p
w
2
3
4
o
t

European Journal of Operational Research 316 (2024) 295–309
Table 1
Comparison between the stochastic time window assignment problem and the main related works.

Authors Year Main
focus

Objective Type Period Area Customer
location

Customer
demand

Service times Travel
times

Time
windows

Customer
preferences

Scenarios Method

Madsen et al. (1995) 1995 AHD Min distance Dynamic One One Unknown Unknown Random (30
or 60 min)

Unknown Continuous
(2 h) Hard

No No Heuristic

Lin and Mahmassani (2002) 2002 AHD Min costs Static One One Unknown Unknown Known Known Discrete and
continuous
Hard

No Yes Heuristic

Campbell and Savelsbergh (2005) 2005 AHD Max profits Dynamic One One Known Unknown N/A Known Discrete (1 h)
Hard

Yes Yes Heuristic

Campbell and Savelsbergh (2006) 2006 AHD Max profits Dynamic One One Known Known Known Known Discrete (1 h)
Hard

Yes No Heuristic

Agatz et al. (2011) 2011 AHD Min costs Static One Multiple Known Unknown N/A Known Discrete Hard No Yes Heuristic

Ehmke and Campbell (2014) 2014 AHD Max number
of accepted
customers

Dynamic One Two Known Unknown Known Unknown Discrete Hard Yes No Heuristic

Spliet and Gabor (2015) 2015 TWA Min costs Static One One Known Unknown Known Known Continuous
Hard

No Yes Exact

Spliet and Desaulniers (2015) 2015 TWA Min costs Static One One Known Unknown Known Known Discrete Hard No Yes Exact

Hernandez et al. (2017) 2017 TWA Min costs Static Multiple Multiple Known Known Known Known Discrete Hard No N/A Heuristic

Manerba et al. (2018) 2018 AHD Min distance Static One One Known Known Known Known Discrete Hard No No Exact

Spliet et al. (2018) 2018 TWA Min costs Static One One Known Unknown Known Known Continuous
Hard

No Yes Exact

Subramanyam et al. (2018) 2018 TWA Min costs Static One One Known Known
and
unknown

Known Known Discrete and
continuous
Hard

No Yes Exact

Köhler et al. (2020) 2020 TWA Max number
of accepted
customers

Dynamic One One Known Unknown N/A Known Discrete (30’
or 4 h) Hard

Yes Yes Heuristic

Agatz et al. (2021) 2021 TWA Min distance Dynamic One One Unknown Unknown Known Unknown Discrete Hard Yes Yes Heuristic

Dalmeijer and Desaulniers (2021) 2021 TWA Min costs Static One One Known Unknown Known Known Continuous
Hard

No Yes Exact

Hoogeboom et al. (2021) 2021 TWA Min costs Static One One Known Unknown Known Known Continuous
Hard

No Yes Exact

Jalilvand et al. (2021) 2021 TWA Min costs Static One One Known Unknown Unknown Known Continuous
Hard and soft

Yes Yes Exact

Yu et al. (2023) 2023 TWA Min costs
and duration

Static and
dynamic

One One Unknown Unknown Unknown Unknown Continuous
Hard

No Yes Exact +
heuristic

This manuscript 2023 TWA Min costs Static Multiple Multiple Unknown Unknown Unknown Known Discrete Hard Yes Yes Heuristic
t

t

t
t
d
b
w
Fig. 1. Example of a global schedule.

Fig. 1 shows an example of a global schedule with 7 zones, with
ime windows spanning from 8:00 a.m. to 5:00 p.m., over a planning
eriod of 5 days (from Tuesday to Saturday). Zone 1 is visited 5 times
ithin a 3-h time window positioned differently during each day. Zone
is visited 4 times and has time windows of 3 h each, whereas Zone
is visited on Tuesday, Wednesday, and Friday with time windows of
h each. Zones 4, 5, and 6 are visited twice and have time windows

f 4 h each. Finally, Zone 7 is visited only on Saturday, within an 8-h
ime window.
298
The SMTWAP can be formally defined as follows. Let 𝜉 be a vector
of random variables corresponding to customers’ locations, demands,
and service times. Each realization of 𝜉 is called a scenario. We assume
that the support of 𝜉 is finite, and we indicate as 𝑆 the set of all
possible scenarios. Each scenario 𝑠 ∈ 𝑆 has a probability 𝑝𝑠 to occur. Let
𝐺𝑠 = (𝑉𝑠, 𝐴𝑠) be the complete graph associated with scenario 𝑠, where
the node set 𝑉𝑠 = 𝑁𝑠 ∪ {0, 𝑛𝑠 + 1} consists of the set of customers
𝑁𝑠 = {1,… , 𝑛𝑠} making a request under scenario 𝑠, plus the starting
depot 0 and the ending one 𝑛𝑠+1. In particular, the set 𝑁𝑠 is partitioned
into ℎ subsets, each one including the customers making part of the
same zone. We denote by 𝑁𝑧

𝑠 ⊆ 𝑁𝑠 the subset of customers belonging
o zone 𝑧 ∈ 𝑍 under scenario 𝑠. The transportation cost 𝑐𝑖𝑗 is incurred

if a vehicle traverses the arc (𝑖, 𝑗) ∈ 𝐴𝑠. Let also 𝑡𝑖𝑗 be the travel
ime to reach customer 𝑗 from customer 𝑖. Each customer 𝑖 ∈ 𝑁𝑠

asks for 𝑞𝑖 units of demand to be delivered on a selected day 𝑑, and
heir service time is 𝑏𝑖. When customers decide to make a purchase,
hey express their preferences by establishing an order of the available
ays. More precisely, each customer 𝑖 sorts the set of available days
y assigning an integer 𝑜𝑖𝑑 to every day 𝑑 in the planning period,
ith 1 (minimum value) as the first preference. On each day 𝑑 of

the planning period, a number 𝑘𝑑 of identical vehicles is available,
each having capacity 𝑄, departing at time 𝑙0 and going back to the
depot by time 𝑢0. Customers who cannot be accommodated by the
company’s fleet of vehicles (unserved customers) can receive a backup
service through a third-party logistic carrier (outsourcing). We denote
by 𝛽 the cost (penalty) incurred when a customer is serviced by a
third-party provider. We assume that this cost is substantially greater
than the routing expenses, to maximize the use of the company fleet.
The SMTWAP aims to define a global schedule such that the expected
transportation costs to visit customers and the penalty cost paid for
unserved ones are minimized.

J.-F. Côté et al.

𝑊
s
𝑁
𝑧
p
(
v
t
t
t
a
i
S

s

European Journal of Operational Research 316 (2024) 295–309
The SMTWAP can be formulated as a two-stage stochastic program.
Let 𝑦𝑧𝑤 be a first-stage binary variable indicating if time window 𝑤 ∈

𝑧 is assigned to zone 𝑧 ∈ 𝑍. The following variables are in the second-
tage. In particular, the binary variable 𝑧𝑠𝑖𝑑 takes value 1 if customer 𝑖 ∈
𝑠 is visited on the day 𝑑 under scenario 𝑠, whereas the binary variable
𝑠
𝑖 is 1 if customer 𝑖 in the same scenario is served by a third party
aying a penalty 𝛽. Let 𝑥𝑡𝑠𝑖𝑗 be a binary variable taking value 1 if arc
𝑖, 𝑗) ∈ 𝐴𝑠 is traversed on day 𝑑 under scenario 𝑠. Finally, the continuous
ariable 𝑎𝑠𝑖 indicates the arrival time at customer 𝑖 under scenario 𝑠, and
hus the starting time of the service. A first-stage solution corresponds
o a feasible global schedule. A second-stage solution not only offers
he routing plan based on an established feasible global schedule but
lso considers customer preferences, as previously explained, and a list,
f any, of unserved customers. The mathematical formulation of the
MTWAP is as follows:

min
∑

𝑠∈𝑆
𝑝𝑠

[

∑

𝑑∈𝐷

∑

(𝑖,𝑗)∈𝐴𝑠

𝑐𝑖𝑗𝑥
𝑡𝑠
𝑖𝑗 + 𝛽

∑

𝑖∈𝑁𝑠

𝑧𝑠𝑖

]

(1)

.t.
∑

𝑤∈𝑊𝑧

𝑦𝑧𝑤 = 𝑛𝑧 𝑧 ∈ 𝑍 (2)

∑

𝑤∈𝑊𝑧(𝑑)
𝑦𝑧𝑤 ≤ 1 𝑧 ∈ 𝑍, 𝑑 ∈ 𝐷 (3)

∑

𝑑∈𝐷
𝑧𝑠𝑖𝑑 + 𝑧𝑠𝑖 = 1 𝑠 ∈ 𝑆, 𝑖 ∈ 𝑁𝑠 (4)

∑

𝑗∈𝑉𝑠

𝑥𝑡𝑠𝑗𝑖 = 𝑧𝑠𝑖𝑑 𝑑 ∈ 𝐷, 𝑠 ∈ 𝑆, 𝑖 ∈ 𝑁𝑠 (5)

∑

𝑗∈𝑉𝑠

𝑥𝑡𝑠𝑖𝑗 =
∑

𝑗∈𝑉𝑠

𝑥𝑡𝑠𝑗𝑖 𝑑 ∈ 𝐷, 𝑠 ∈ 𝑆, 𝑖 ∈ 𝑁𝑠 (6)

∑

𝑗∈𝑉𝑠

𝑥𝑡𝑠0𝑗 ≤ 𝑘𝑑 𝑑 ∈ 𝐷, 𝑠 ∈ 𝑆 (7)

∑

𝑖∈𝐻

∑

𝑗∈𝐻
𝑥𝑡𝑠𝑖𝑗 ≤ |𝐻| −

⌈
∑

𝑖∈𝐻 𝑞𝑖
𝑄

⌉

𝑑 ∈ 𝐷, 𝑠 ∈ 𝑆,𝐻 ⊆ 𝑉𝑠, |𝐻| ≥ 2 (8)

𝑎𝑠𝑗 ≥ 𝑎𝑠𝑖 + (𝑏𝑖 + 𝑡𝑖𝑗)
∑

𝑑∈𝐷
𝑥𝑡𝑠𝑖𝑗 − 𝑢0

(

1 −
∑

𝑑∈𝐷
𝑥𝑡𝑠𝑖𝑗

)

(𝑖, 𝑗) ∈ 𝐴𝑠, 𝑠 ∈ 𝑆 (9)

𝑎𝑠𝑖 ≤
∑

𝑤∈𝑊𝑧(𝑑)
𝑢𝑤𝑦𝑧𝑤 + 𝑢0(1 − 𝑧𝑠𝑖𝑑) 𝑑 ∈ 𝐷, 𝑠 ∈ 𝑆, 𝑧 ∈ 𝑍, 𝑖 ∈ 𝑁𝑧

𝑠 (10)

𝑎𝑠𝑖 ≥
∑

𝑤∈𝑊𝑧(𝑑)
𝑙𝑤𝑦𝑧𝑤 − 𝑢0(1 − 𝑧𝑠𝑖𝑑) 𝑑 ∈ 𝐷, 𝑠 ∈ 𝑆, 𝑧 ∈ 𝑍, 𝑖 ∈ 𝑁𝑧

𝑠 (11)

𝑧𝑠𝑖𝑑 + 𝑧𝑠𝑖 ≥
∑

𝑤∈𝑊𝑧(𝑑)
𝑦𝑧𝑤 −

∑

𝑑∈𝐷
𝑜𝑖𝑑 <𝑜𝑖𝑑

∑

𝑤∈𝑊𝑧(𝑑)

𝑦𝑧𝑤 𝑑 ∈ 𝐷, 𝑠 ∈ 𝑆, 𝑧 ∈ 𝑍, 𝑖 ∈ 𝑁𝑧
𝑠 (12)

𝑧𝑠𝑖 , 𝑧
𝑠
𝑖𝑑 ∈ {0, 1} 𝑑 ∈ 𝐷, 𝑠 ∈ 𝑆, 𝑖 ∈ 𝑁𝑠 (13)

𝑥𝑡𝑠𝑖𝑗 ∈ {0, 1} 𝑑 ∈ 𝐷, 𝑠 ∈ 𝑆, (𝑖, 𝑗) ∈ 𝐴𝑠 (14)

𝑎𝑠𝑖 ≥ 0 𝑠 ∈ 𝑆, 𝑖 ∈ 𝑁𝑠 (15)

𝑦𝑧𝑤 ∈ {0, 1} 𝑧 ∈ 𝑍,𝑤 ∈ 𝑊𝑧 (16)

The objective (1) minimizes the expected routing costs over the
planning period and the expected total penalty cost for unserved cus-
tomers. Allowing customers not to be served means we have a complete
recourse, i.e., a feasible second-stage solution for any first-stage so-
lution. Constraints (2) ensure that, for each zone 𝑧, exactly 𝑛𝑧 time
windows are selected. Constraints (3) assign to each zone 𝑧 on each
day 𝑑 at most a single time window in 𝑊𝑧(𝑑). Constraints (4) impose
that each customer 𝑖 in scenario 𝑠 is either served by the fleet or by an
external carrier (𝑧𝑠𝑖 = 1). Constraints (5) state that, if node 𝑖 is visited
under scenario 𝑠 on the day 𝑑, an arc has to enter the node. Constraints
(6) guarantee flow conservation. Constraints (7) set at most 𝑘𝑑 routes
on each day 𝑑 under scenario 𝑠. Constraints (8) are subtour-elimination
and rounded-capacity constraints. Constraints (9)–(11) guarantee the
schedule feasibility w.r.t. the chosen time windows. Constraints (12)
ensure that customer 𝑖 is served on his/her most preferred day 𝑑 if
there is a time window available in his/her zone on such a day and
no time window is available on another day 𝑑 with a higher preference

(𝑜𝑖𝑑 > 𝑜𝑖𝑑). Constraints (13)–(16) define the variables domain.

299
4. Solution methodology

The challenge in addressing the SMTWAP primarily stems from the
large number of scenarios involved. The presence of binary variables
makes this two-stage stochastic problem impractical even for small
instances and nearly impossible for real-life applications (e.g., 25 zones
and 30 customers per zone lead to at least 2530 scenarios). To man-
age this complexity, we employed the Sample Average Approximation
Method (SAAM), a Monte Carlo simulation-based approach proposed
by Kleywegt, Shapiro, and Homem-de Mello (2002) and particularly
suitable to solve stochastic discrete optimization problems involving
a very large scenario set. In our case, SAAM addresses a sequence of
SMTWAP problems (the so-called SAA problems), where the scenario set
of each problem consists of an independent and identically distributed
(i.i.d.) random sample �̄� consisting of 𝜉1, 𝜉2,… 𝜉

|�̄�| realizations of the
random vector 𝜉 (cfr. Section 3), over which the expected value of
the objective function of the problem is approximated by the sample
average function. The random sample has size |�̄�| much smaller than
that of the original scenario set 𝑆, i.e., |�̄�| ≪ |𝑆|. The larger the sample
size �̄�, the better, on expectation, the value of an optimal solution to
an SAA problem, and the tighter the bounds on the optimality gap.
However, the larger the sample size, the higher the computational
complexity. This trade-off makes critical the selection of the size of the
sample. Thus, one might choose a small sample �̄� to optimally solve
the SAA problems efficiently but then estimate more accurately the
value of the optimal solution of each SAA problem over a sample �̂�,
with |�̂�| ≫ |�̄�|. The goal of the method is twofold: estimating the
optimality gap by a statistical lower bound (i.e., the optimal values
obtained by solving the SAA problems) and providing an upper bound
on the optimal value (by evaluating each solution of the SAA problems
on a scenario set �̂�).

4.1. SAAM application to SMTWAP

To apply SAAM, we refer to model (1)–(16) with the following
notation:

𝑣∗ = min
𝑦∈𝐘

E𝑠∈𝑆 [𝐶(𝑦, 𝑠)], (17)

where 𝐘 is the set of first-stage solutions, 𝐶(𝑦, 𝑠) is the cost of the
second stage with the first-stage solution 𝑦 fixed for scenario 𝑠, and
𝑣∗ is the value of the optimal solution. The evaluation of E𝑠∈𝑆 [𝐶(𝑦, 𝑠)]
for a given value of 𝑦 requires the solution of numerous second-stage
optimization problems. Since 𝑆 contains a finite number of scenarios
with associated probabilities, the expectation can be evaluated as the
following finite sum:

E𝑠∈𝑆 [𝐶(𝑦, 𝑠)] =
∑

𝑠∈𝑆
𝑝𝑠𝐶(𝑦, 𝑠) (18)

where 𝑝𝑠 is the probability for scenario 𝑠 to occur. Since the number of
scenarios grows exponentially fast with the data dimension, applying
Eq. (18) directly can be impractical. For this reason, we generate a
scenario sample �̄� of reasonable size and then solve the following
deterministic optimization problem (SAA) specified by the generated
sample as follows:

𝑣�̄� = min
𝑦∈𝐘

1
|�̄�|

∑

𝑠∈�̄�

𝐶(𝑦, 𝑠), (19)

where the expected value function is approximated by the sample
average function. The optimal value 𝑣�̄� to the SAA problem and the
corresponding optimal solution provide estimates of their actual coun-
terparts in the stochastic program.

This procedure can be repeated by generating several samples and
solving related optimization problems until a stopping rule is met
(e.g., time limit, optimality gap, number of SAA problems solved).
Let us assume that the sample generation is repeated 𝑚 times and

that the corresponding SAA problems is solved using a deterministic

J.-F. Côté et al.

w

𝜎

𝑣

𝑟

O

o

L

p
t
n
m
m
f
t
w
s

1
1
1
1
1
1
1
1
1

European Journal of Operational Research 316 (2024) 295–309
optimization algorithm. We indicate as �̄�𝑖 the 𝑖-sample, 𝑣�̄�𝑖
its optimal

value, and 𝑦𝑖 its optimal solution. Following Mak, Morton, and Wood
(1999), a statistical lower bound on 𝑣∗ can be computed as a sample
average of the 𝑚 optimal values as follows:

�̄�𝑚 = 1
𝑚

𝑚
∑

𝑖=1
𝑣�̄�𝑖

, (20)

ith the following variance:

2
𝑣𝑚 = 1

𝑚(𝑚 − 1)

𝑚
∑

𝑖=1
(�̄�𝑚 − 𝑣�̄�𝑖

)2. (21)

The estimator �̄�𝑚, depending on the sample, is a random variable
for which E[�̄�𝑚] ≤ 𝑣∗, with a negative bias. By the Law of Large
Numbers, �̄�𝑚 converges to the optimal value 𝑣∗ with probability one as
𝑚 → ∞ (Mak et al., 1999). A way to evaluate the quality of a solution
𝑦𝑖 is to bound its optimality gap, computed as E𝑠∈�̄�𝑖

[

𝐶(𝑦𝑖, 𝑠)
]

− 𝑣∗, by
using the lower-bound estimator �̄�𝑚 instead of 𝑣∗. Moreover, we can
obtain a more accurate estimate of each solution 𝑦𝑖 by using a larger
sample �̂� as follows:

̂(𝑦𝑖) = 1
|�̂�|

∑

𝑠∈�̂�

𝐶(𝑦𝑖, 𝑠), (22)

with variance:

𝜎2(𝑦𝑖) = 1
|�̂�|(|�̂�| − 1)

∑

𝑠∈�̂�

(�̂�(𝑦𝑖) − 𝐶(𝑦𝑖, 𝑠))2. (23)

Then, �̂�(𝑦𝑖)− �̄�𝑚 is an estimator of the optimality gap for solution 𝑦𝑖 and
its variance is 𝜎2(𝑦𝑖)+𝜎2𝑣𝑚 . This estimator has a negative bias E[�̄�𝑚] that
monotonically decreases with a larger sample size.

In our methodology, we introduce a heuristic approach to solving
SAA problems. This has the drawback that the value �̄�𝑚 is very likely
not to be a valid lower bound, as it overestimates the optimal value of
each SAA problem. Values �̂�(𝑦𝑖) are also quite likely overestimated. Still,
these provide a rough estimate of the optimal value and enable us to
evaluate the quality of found solutions. As a stopping criterion, we use
the maximum number of iterations 𝑀 (generated samples) instead of a
rule based on the optimality gap, which might make the heuristic end
too soon or perform too many iterations. About the trade-off between
solution quality and computational effort, with a larger sample size, �̄�𝑚
will provide a more accurate estimate, and 𝑦𝑖, having the smallest �̂�(𝑦𝑖)
value, will tend to be a better solution but the computational effort will
increase at least linearly. In Section 6, we perform some computational
experiments to find the best setting of these parameters.

The pseudo-code of our approach is described in Algorithm 1. The
sample dimension and the number of iterations 𝑀 are provided as
input. For each of the 𝑀 iterations, an i.i.d. scenario set �̄�𝑖 of size
̄ is generated, and the corresponding SAA problem solved by using
the heuristic methods described in Section 5.1. Then, �̂�(𝑦𝑖) is computed
(Line 5) by using the scenario set �̂� of size �̂� > �̄� generated in Line 1.
When the stopping rule is met, the algorithm computes the lower-bound
estimate �̄� and returns the best first-stage solution 𝑦∗ generated across
the 𝑀 replications.

Algorithm 1 SAAM
Input: Number of iterations 𝑀 , sample sizes �̄� and �̂�, with �̂� > �̄�.
utput: Solution 𝑦∗, lower bound �̄�.

1: Generate a large sample set �̂� of size |�̂�| = �̂�.
2: for 𝑚 = 1 to 𝑀 do
3: Generate sample set 𝑆𝑖 of size |𝑆𝑖| = �̄�.
4: Solve the SAA problem to obtain solution 𝑦𝑖 of value 𝑣𝑆𝑖 .
5: Compute �̂�(𝑦𝑖) (estimate 𝑦𝑖 over sample �̂�).
6: �̄� = 1

𝑀
∑𝑀

𝑖=1 𝑣𝑆𝑖 .
7: Compute 𝑦∗ = argmin𝑀𝑖=1

{

�̂�(𝑦𝑖)
}

.
8: return 𝑦∗, �̄�.

5. Solving SAA problems

In this section, we describe the algorithms used to solve the SAA
problems. The presentation is made separately for the two stages.
300
5.1. First-stage solution

In what follows, 𝐻 denotes a first-stage solution, i.e., a global
schedule such that each zone 𝑧 is visited exactly 𝑛𝑧 times and at most
nce per day.

ocal search
Since computing the second-stage solution is computationally ex-

ensive, first-stage algorithms are based on a small-size neighborhood
o avoid calculating the cost of the second stage too many times. The
eighborhood move exchanges time windows in the same zone while
aintaining the feasibility of the first-stage solution. The quality of a
ove is assessed through the second-stage cost. Our solution framework

irst creates an initial solution 𝐻 , then improves it by using the heuris-
ic Perturbation based on LocalSearch, which works by relocating time
indows over the planning period. The pseudo-code of LocalSearch is

hown in Algorithm 2. Given a global schedule 𝐻 as input, at each
step, an attempt is made to decrease the second-stage cost by replacing
a time window 𝑤 in 𝐻 with another one 𝑤′ belonging to the same zone.

Algorithm 2 LocalSearch
Input: a global schedule 𝐻 , a scenario sample �̄�.
Output: a (possibly improved) global schedule 𝐻∗.
1: 𝑓𝑖𝑛𝑑 ← true
2: 𝐻∗ ← 𝐻
3: 𝑓∗ ← ∞
4: while find do
5: 𝑓𝑖𝑛𝑑 ← false
6: for each time window 𝑤 ∈ 𝐻 do
7: Let 𝑧 be the zone associated with 𝑤.
8: for each time period 𝑑 ∈ 𝐷 do
9: for each time window 𝑤′ ∈ 𝑊𝑧(𝑑) do
0: 𝐻 ′

← UpdateSchedule(𝐻,𝑤,𝑤′)
1: 𝑓 (𝐻 ′) ← OptimizeRoutes(𝐻 ′ , �̄�)
2: if 𝐻 ′ is feasible and 𝑓 (𝐻 ′) < 𝑓∗ then
3: 𝑓∗ ← 𝑓 (𝐻 ′), 𝑤∗ ← 𝑤′

4: 𝑓𝑖𝑛𝑑 ← true
5: 𝐻∗ ← UpdateSchedule(𝐻,𝑤,𝑤∗)
6: 𝑓 (𝐻∗) ← 𝑓∗

7: 𝐻 ← 𝐻∗

8: return 𝐻∗

For each move, we ensure that the generated solution has no
more than one time window for each day and zone. The algorithm
is run until no further improvement can be obtained. The function
UpdateSchedule(𝐻,𝑤,𝑤′) substitutes the time window 𝑤 with 𝑤′ in the
global schedule 𝐻 , whereas the function OptimizeRoutes(𝐻, �̄�) solves
the second stage by computing the routes according to the time win-
dows assigned in 𝐻 and by considering the scenario set �̄�.

We are to save computing time by employing the following two
strategies. The first one tries to avoid unnecessary computation. In
particular, when solving the second stage for a given scenario and
period in the procedure OptimizeRoutes, this checks whether customers
or their time windows have changed. If at least one change is observed,
the second stage of that period is solved. Otherwise, the second-stage
cost of that period is returned. Since moves involve changing a single
time window, only one or two periods are involved. Thus, significant
savings can be obtained when solving problems with a large planning
period. We observed that computing times are close to 1

𝜏 (with 𝜏 being
the planning horizon) of the time needed when not using this strategy.

The second strategy tries to explore the neighborhood with the aim
of making the fewest changes to the second stage. For example, if two
consecutive moves relocate a first time window 𝑤1 from period 2 to
3 and a second time window 𝑤2 from period 1 to 4, then the second
stage has to be solved only for periods 1 to 4. Instead of going through
the time windows one by one (Lines 6, 8–9), all possible moves are
generated before attempting them and stored in an array sorted in
such a way that all moves in the same periods are next to each other.
Computing time savings of about 20% are observed when using this
strategy.

J.-F. Côté et al.

1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2

e
r
d
t
p

b

European Journal of Operational Research 316 (2024) 295–309
Initial solution
Algorithm 3 constructs a first-stage initial solution by generating

a global feasible schedule 𝐻 , assigning to each zone 𝑧 ∈ 𝑍 exactly
𝑛𝑧 time windows, each occurring in a day randomly selected and not
already associated with another time window of the same zone 𝑧. Each
time window is represented by a tuple (𝑙, 𝑢, 𝑑, 𝑧) where start and end
times 𝑙 and 𝑢 are initialized to 𝑙0 and 𝑢0, 𝑑 is the day of the planning
period to which the window belongs, and 𝑧 is the zone. In Lines 2–6, to
prevent more than one of the 𝑛𝑧 time windows in zone 𝑧 are assigned
to the same day, the procedure Shuffle randomly perturbates an integer
array 𝐷 with values from 1 to 𝜏. The days associated with the 𝑛𝑧 time
windows will correspond to the first 𝑛𝑧 entries in the array 𝐷. Each
time the function is called, a new set of days is assigned to the time
windows of a selected zone. The corresponding time windows are then
added to 𝐻 by the function Add. Then, the procedure tries to improve
the day-zone assignment of the current schedule 𝐻 (Lines 7–16) such
that the time windows of neighboring zones are in the same period. For
each time window 𝑤, the values 𝑓 ∗ and 𝑑∗ are the cost and period of the
best move. At each iteration, 𝑤 is moved to a temporary period 𝑑′, and
values 𝑓 ∗ and 𝑑∗ are updated if there is no other time window of the
same zone on period 𝑑′ and if the second-stage cost 𝑓 ′ is lower than 𝑓 ∗.
Then, 𝑤 is moved to the best period found 𝑑∗ (Line 16). Notice that, in
Lines 7–25, each time window is evaluated on all possible periods and
starting times to obtain the largest decrease in the cost of the second
stage. Initially, a copy of the current solution is stored in 𝐻∗. Then,
the method tries to substitute each time window 𝑤 in the current first-
stage solution with a feasible time window 𝑤′ ∈ 𝑊𝑧 by reducing its
duration. In Line 20, the algorithm updates 𝐻 by substituting an all-
day time window 𝑤 with a restricted one 𝑤′, thus narrowing it to a
proper duration. The algorithm updates the values of 𝑓 ∗ and 𝑤∗ when
improving the cost over 𝑤∗. Finally, 𝑤 is replaced by the best 𝑤∗ found,
and 𝐻∗ is returned.

Algorithm 3 InitialSolution
Input: the zone set 𝑍 and a scenario sample �̄�
Output: a global schedule 𝐻∗

1: 𝐻 ← ∅; 𝐷 ← [1, ..., 𝜏];
2: for each zone 𝑧 ∈ 𝑍 do
3: 𝐷 ← Shuffle(𝐷)
4: for 𝑖 = 1 to 𝑛𝑧 do
5: 𝑤 ← (𝑙0 , 𝑢0 , 𝐷[𝑖], 𝑧)
6: 𝐻 ← Add(𝐻,𝑤)
7: 𝐻∗ ← 𝐻
8: for each time window 𝑤 = (𝑙, 𝑢, 𝑑, 𝑧) ∈ 𝐻 do
9: 𝑓∗ ← ∞, 𝑑∗ ← 𝑑
0: for each period 𝑑′ ∈ 𝐷 do
1: 𝑤′ ← (𝑙, 𝑢, 𝑑′ , 𝑧)
2: 𝐻 ′ ← UpdateSchedule(𝐻,𝑤,𝑤′)
3: 𝑓 (𝐻 ′) ← OptimizeRoutes(𝐻 ′ , �̄�)
4: if 𝐻 ′ is feasible and 𝑓 (𝐻 ′) < 𝑓∗ then
5: 𝑓∗ ← 𝑓 (𝐻 ′), 𝑑∗ ← 𝑑′

6: 𝑤 ← (𝑙, 𝑢, 𝑑∗ , 𝑧)
7: for each time window 𝑤 = (𝑙, 𝑢, 𝑑, 𝑧) ∈ 𝐻 do
8: 𝑤∗ ← 𝑤, 𝑓∗ ← ∞
9: for each time window 𝑤′ ∈ 𝑊𝑧 do
0: 𝐻 ′ ← UpdateSchedule(𝐻,𝑤,𝑤′)
1: 𝑓 (𝐻 ′) ← OptimizeRoutes(𝐻 ′)
2: if 𝐻 ′ is feasible and 𝑓 (𝐻 ′) < 𝑓∗ then
3: 𝑓∗ ← 𝑓 (𝐻 ′), 𝑤∗ ← 𝑤′

4: 𝐻∗ ← UpdateSchedule(𝐻∗ , 𝑤,𝑤∗)
5: 𝑓 (𝐻∗) ← 𝑓∗

6: return 𝐻∗

Perturbation meta-heuristic
We now describe the meta-heuristic Perturbation that allows us to

scape from local optima by moving a number 𝛼1 of time windows,
andomly selected, to the most convenient days (in terms of cost)
ifferent from their current ones. Thus, the parameter 𝛼1 controls
he perturbation intensity. Procedure LocalSearch is then run on each
erturbed solution.
Perturbation, as shown in Algorithm 4, runs over a maximum num-
er 𝑖𝑡𝑀𝑎𝑥 of iterations. At the beginning of each iteration, the best

301
Algorithm 4 Perturbation
Input: a global schedule 𝐻 , a scenario sample �̄�
Output: a global schedule 𝐻∗

1: 𝐻∗ ← LocalSearch(𝐻, �̄�)
2: for 𝑖𝑡𝑒𝑟 = 1 to 𝑖𝑡𝑀𝑎𝑥 do
3: 𝐻 ← 𝐻∗

4: for 𝛼1 = 1 to 𝛾1 do
5: for 𝛼2 = 1 to 𝛾2 do
6: 𝐻 ← MoveTWs(𝐻, 𝛼1)
7: 𝑓 (𝐻) ← OptimizeRoutes(𝐻, �̄�)
8: if 𝑓 (𝐻) < 𝑓 (𝐻∗) then
9: 𝐻∗ ← 𝐻
10: 𝐻 ← LocalSearch(𝐻∗ , �̄�)
11: 𝑓 (𝐻) ← OptimizeRoutes(𝐻, �̄�)
12: if 𝑓 (𝐻) < 𝑓 (𝐻∗) then
13: 𝐻∗ ← 𝐻
14: 𝛼1 ← 1
15: return 𝐻∗

first-stage solution 𝐻∗ found until that point is copied into the current
solution 𝐻 (Line 3). The solution is perturbed using two inner loops
(Lines 4–14) controlled by the two parameters 𝛼1 and 𝛼2, initially set to
a low value and then adjusted dynamically. While 𝛼1 works similarly to
the radius of a Variable Neighborhood Search (deciding the number of
time windows to move and increasing in value when no better solution
can be found), 𝛼2 controls the number of times the current solution
must be perturbed. In Line 6, the function MoveTWs randomly moves
𝛼1 time windows to their cheapest periods, and then LocalSearch is
applied to find a local minimum (Line 10). If the new solution found has
improved over the best one, 𝛼1 is set back to its initial value, and the
perturbation continues. Otherwise, the value of 𝛼1 is increased. When
it reaches its maximum value 𝛾1, the search is restarted, and the best
solution is copied again into the current one. The incumbent solution
is updated every time a new best solution is found (Lines 9 and 13),
and eventually, the best global schedule found 𝐻∗ is returned (Line
15). Best values for parameters 𝑖𝑡𝑀𝑎𝑥, 𝛾1, and 𝛾2 are investigated in
Section 6.

5.2. Second-stage solution

In the second stage, the global schedule 𝐻 computed in the first
stage is used by OptimizeRoutes to determine the routes to visit the
customers of the different zones. Since a zone might be visited more
than once over the planning period, and possibly in different time
windows, we need to establish when a customer of a given zone has
to be served. All customers have an ordered list of days on when they
prefer to be served. We thus assume that they will select the best
combination of day provided for their zone when placing the order.
Also, each customer will be served in the time window of the current
schedule 𝐻 corresponding to the day having the highest order in their
preference list. This allows us to guarantee, on average, good customer
satisfaction. To compute the cost associated with the routing of a fleet
of vehicles, given a global schedule 𝐻 , we solve a modified VRPTW for
each scenario of the sample and each period 𝑑 ∈ 𝐷 by minimizing the
total travel distance and the number of unserved customers. To this
aim, we run some classical local search procedures and an Adaptive
Large Neighborhood Search (ALNS) framework following the general
scheme proposed by Ropke and Pisinger (2006).

OptimizeRoutes receives as input a global schedule 𝐻 and a set of
scenarios �̄�. The cost of routing 𝑓 for each scenario 𝑠 and period
𝑑 is initialized to 0 (Line 1). After assigning customers to time win-
dows (Line 3), the procedure builds an initial solution for each period
𝑑 ∈ 𝐷 by applying the ConstructRoutes procedure (Line 5). This is a
construction heuristic where customers are sequentially inserted in an
available route by the Regret-𝑘 insertion heuristic described in Potvin
and Rousseau (1993). In particular, at each iteration, the heuristic
computes the minimal insertion cost into each route and selects the

J.-F. Côté et al.

p
h
p
t
h
t
a
i
t
R
a
i
m
n
A
7
i
(
m
r

5

T
p
c
c
i
i
A
C
b
r
i

c
E
t
d
f
a
n
t

European Journal of Operational Research 316 (2024) 295–309
Algorithm 5 OptimizeRoutes
Input: a global schedule 𝐻 , a scenario sample �̄�
Output: average routing cost of the global schedule 𝐻
1: 𝑓 ← 0
2: for 𝑠 = 1 to |�̄�| do
3: Assign customers to days/time windows
4: for 𝑡 = 1 to |𝑇 | do
5: 𝑅𝑠

𝑑 ← ConstructRoutes(𝐻,𝑁𝑠 , 𝑑, 𝑘𝑑)
6: 𝑅𝑠

𝑑 ← ALNS(𝑅𝑠
𝑑)

7: 𝑅𝑠
𝑑 ← Improvement(𝑅𝑠

𝑑)
8: 𝑓 ← 𝑓 + 𝐶(𝑅𝑠

𝑑)

9: return 𝑓
|�̄�|

customer who maximizes the sum of differences between the cost of
inserting in their best route minus the best insertion costs in the other
routes. This is a lookahead value indicating the loss that could be
incurred if the customer is not inserted. If some customers cannot be
feasibly inserted into a route, they are left in a customer bank to be
inserted later. 𝑅𝑠

𝑑 and 𝐶(𝑅𝑠
𝑑) indicate the set of routes serving customers

of period 𝑑 in scenario 𝑠 and their cost, respectively. Then, the ALNS
rocedure is called (Line 6). At each iteration, removal and insertion
euristics are selected among the ones available in the framework. The
urpose of the removal heuristic is to remove some customers from
he solution and put them into the customer bank. Then, the insertion
euristic selects some other customers in the customer bank to insert
hem back into the solution, possibly improving it. We have selected
nd implemented a subset of the destroy/repair operators described
n Ropke and Pisinger (2006). In particular, after extensive preliminary
ests, we have selected the Random removal, the Shaw removal, and the
egret-𝑘 insertion, because they offer the best trade-off in terms of time
nd quality. All operators, as well as the roulette-wheel mechanism, are
mplemented as in Ropke and Pisinger (2006). We introduced only two
inor changes corresponding to the cooling rate (set to 0.8) and the
umber of iterations decided after some tests, as described in Section 6.
fter the removal/insertion process, the procedure Improvement (Line
) sequentially applies two local search operators until no further
mprovement can be found: 2-Opt∗, described in Potvin and Rousseau
1995), and Relocate, proposed by Savelsbergh (1992), which tries to
ove a customer from one route into another. In the end, the average

outing cost 𝑓∕|�̄�| is returned.

.3. Speed-up techniques

We implement two techniques to improve our algorithms speed.
he former is an ALNS hot-starting. In many cases, global schedules,
rovided as input to the second stage, do not drastically change. Typi-
ally, they differ for only a time window or its starting time. Instead of
onstructing a solution from scratch, the current second-stage solution
s kept in memory for each scenario. The time window of each customer
s updated each time the second-stage problem is about to be solved.
lso, the feasibility of every route is checked before executing ALNS.
ustomers causing infeasibility are removed and put into the customer
ank. Once all routes are made feasible, customers in the bank are
einserted into the solution using the regret heuristic, and then ALNS
s started.

The second technique uses a hash table to store and retrieve the
ost of the second stage of every first-stage solution already visited.
ach global schedule is hashed to a 64-bit integer as follows. First,
ime windows are sorted by non-decreasing zone and breaking ties by
ay. Each time window is transformed into a 32-bit integer, where the
irst 10 bits correspond to the day, the next 11 to the starting time,
nd the last 11 to the ending time (both times are represented in the
umber of minutes since midnight). Then, the integer identifier of each
ime window is added to a list that is hashed into a 64-bit integer key
302
Table 2
Instance classes used in the different experiments of our evaluation.

Experiments Instances

Perturbation parameter tuning and performance Class A, Class B
Second-stage parameter tuning and performance Class A
Value of the stochastic solution Class A
Quality of service Class A
Application to real-world data Class C

by using the one-at-a-time function by Jenkins.1 The key and cost of
the solution are added to a traditional hash table. Each time a call to
OptimizeRoutes(𝐻, �̄�) is made, a check is performed in the hash table
whenever this solution has been previously found. If an entry exists,
the retrieved cost is returned; otherwise, the cost of the second stage
is computed and stored in the hash table. A speed-up of 5x can be
achieved by using this technique.

6. Experimental evaluation

This section provides an overview of the computational experiments
conducted to assess the performance of our solution approaches. It is
partitioned into six parts: (i) Instances offers information about the in-
stances used in our experiments; (ii) Perturbation and (iii) Second-stage
parameter setting and performance respectively delve into fine-tuning
components and parameters, and assessing performance of the meta-
heuristic and OptimizeRoutes in the second stage; (iv) Value of the
stochastic solution analyzes the solution obtained by SAAM; (v) Quality
of service investigates the variations in the quality of service in response
to modifications, such as changes in time window characteristics, daily
working hours, and the availability of drivers; and (vi) Application to
real-world data tests the applicability of our approach to real-world
scenarios that served as the initial motivation for this study, yielding
managerial insights. All algorithms have been coded in C++ and run
on an Intel 2.667 GHz Westmere EP X5650 processor under Scientific
Linux 6.3.

6.1. Instances

Since no benchmark instances exist for this problem, we create three
new data sets, namely Class A, B, and C. For each aspect previously
identified, Table 2 indicates which classes of instances are used to
perform the related experiments.

Class A instances. The delivery region is partitioned into a grid,
where each square corresponds to a zone of 500 × 500. For each
zone, we assume to know the probability distributions for the locations,
demands, and service times of the customers. In particular, the total
number of customers follows a Poisson distribution. Locations are
uniformly distributed, whereas demands and service times follow two
normal distributions, with a standard deviation of 5. Demands have an
average value of 20, whereas service times average values are shown
in Table 3. If we obtain a negative value when generating the random
demands and service times, we keep generating a new number until
it is non-negative. Distances are Euclidean and the vehicle capacity is
set to 800. The operating hours of the depot start at 8 AM or 9 AM
and end between 2 PM and 5 PM. The 𝛽 cost associated with unserved
customers is set to 106 to favor the number of served customers over the
distance. All time windows have a width of 3 h. The required number
of time windows per zone is estimated by approximating each zone’s
work time, including the total travel and service times. The total travel
time is computed by using the approximation of the optimal routing
cost proposed by Figliozzi (2008):

𝐿∗ = 1
𝑠𝑝𝑒𝑒𝑑

⋅
(

1.45 ⋅
𝑛𝛼 − 𝑘
𝑛𝛼

⋅
√

𝐸�̄� + 2𝑟𝑘
)

, (24)

1 http://burtleburtle.net/bob/hash/doobs.html

http://burtleburtle.net/bob/hash/doobs.html

J.-F. Côté et al.

a
t
𝑏

s
r
𝑛
e
r

F
t
e
d
g
e

European Journal of Operational Research 316 (2024) 295–309
Table 3
Structure of Class A instances.

Zones TWs Days Daily Average Average Drivers per Work time
Group (#) (#) (#) schedule customers (#) service time (𝑠) day (#) per zone (min)

1 6 1 2 8 AM–2 PM 32 20 1 166.3
2 8 1 2 8 AM–4 PM 48 18 1 162.5
3 8 1 2 8 AM–4 PM 64 12 1 148.1
4 12 1 2 9 AM–4 PM 72 16 2 146.6
5 12 1 2 9 AM–4 PM 96 14 2 166.2
6 16 1 3 9 AM–4 PM 132 14 2 170.4
7 16 2 3 8 AM–5 PM 132 30 3 327.1
8 20 2 4 8 AM–5 PM 160 32 3 336.5
9 16 3 5 8 AM–4 PM 192 30 3 464.2
10 20 3 5 8 AM–4 PM 200 30 3 390.5
Table 4
Structure of Class B instances.

Zones TWs Days Daily Average Average Average Drivers per Work time
Group (#) (#) (#) schedule customers (#) demand service time (𝑠) day (#) per zone (min)

1 4 1 1 8 AM–5 PM 8 20 32 1 119.7
2 4 1 2 8 AM–3 PM 12 52 26 1 139.8
3 4 1 1 8 AM–4 PM 16 22 15 1 108.7
4 4 1 2 8 AM–3 PM 16 54 22 1 151.5
5 4 1 1 8 AM–4 PM 24 15 10 1 108.2
6 4 1 2 8 AM–3 PM 24 30 18 1 175.8
7 6 1 3 8 AM–2 PM 24 52 20 1 135.5
8 6 2 2 8 AM–3 PM 24 55 30 2 191.7
9 6 2 2 8 AM–4 PM 30 45 30 2 228.8
10 8 1 4 8 AM–1 PM 32 52 22 1 143.4
a
t
w
2
t
e

g

where 𝐿∗ is the total travel time (in hours), 𝑛𝛼 is the number of
customers, 𝐸 is the total area of the delivery region, 𝑘 is the number
of drivers, 𝑟 is the average distance customer/depot computed as half
the diagonal of a square of area equal to 𝐸, and speed is the traveling
speed of the vehicles. The speed is set to 100

60 ⋅ 50 km/h to represent time
as a function of the travel distance. The formula does a regression over
these parameters to approximate the total travel time of the fleet. The
total work time in each zone is approximated as 𝐿∗

𝑧 = 𝐿∗

|𝑍|

+𝑏𝑧
𝑛𝛼
|𝑍|

. The
pproximated work time 𝐿∗

𝑧 in zone 𝑧 is composed of the total travel
ime 𝐿∗ divided by the number of zones, plus the expected service time
𝑧 of zone 𝑧 times the number of customers in the zone

(

𝑛𝛼
|𝑍|

)

. Since
the instances in each configuration are homogeneous, all 𝐿∗

𝑧 values are
the same. Then, the number of time windows (all with a width equal
to 3 h) in zone 𝑧 is as follows:

of time windows in zone 𝑧 =
⌈ 𝐿∗

𝑧
TW Width

⌉

. (25)

To ensure an adequate number of time windows, we do not rely
olely on the expected number of customers, but we align it with the
equired number of time windows. The value 𝑛𝛼 is such that 𝑃 (𝑋 ≤
𝛼) = 𝛼, where 𝑋 is a Poisson random variable with an expected value
qual to 𝑛. A value of 𝛼 = 0.95 increases 𝐿∗ and 𝐿∗

𝑧 by ensuring a
elatively low number of unserved customers.

For each instance, we derive the corresponding scenarios as follows.
irstly, the total number of customers is randomly generated according
o a Poisson distribution. Secondly, a zone is randomly selected with
qual probability for each customer. Thirdly, each customer is ran-
omly located inside a zone with demand and service time randomly
enerated according to a normal distribution. Each customer’s prefer-

nces on the delivery date are given by a random permutation of the

303
rray 𝐷 = [1, 2,… , 𝜏]. We assume that each scenario is equally likely
o occur. Finally, an expected scenario is also generated for comparing
hat would produce a deterministic approach (like in Hernandez et al.,
017) versus a stochastic one. This scenario is characterized by having
he number of customers, their service times, and demands exactly
qual to the expected values.

Table 3 describes the different groups of instances of Class A.
Each group consists of 5 instances. In each instance, the depot is
randomly located inside the geographical grid. Moreover, each group
is characterized by a number of zones, a number of time windows per
zone, a number of days in the planning period, an average number of
customers, an average service time, a number of available drivers for
each day, and an estimation of the required work time spent in each
zone.

Class B instances. Table 4 details Class B instances. These were
enerated in the same way as those of Class A. To make them

more easily solvable by CPLEX for solving model (1)–(16), the average
number of customers is smaller. Moreover, the depot operating hours,
demands, and service times are fine-tuned to have all customers served.
The vehicle capacity is set to 600.

Class C instances. This set encompasses data from a real-world ap-
plication of a Canadian furniture company. The company operates two
warehouses located in the cities of Edmonton and Calgary. Both ware-
houses deliver products to customers located in their neighborhood
area.

The company’s historical database consists of 80 000 deliveries over
several months. The warehouse of Edmonton offers deliveries in 49

postal codes with an average of 463 customers per week and a fleet

J.-F. Côté et al.

𝛾
𝛼
r
a
G
p
a
c
a
t
t

t
𝑖
T
n
c
t
c
c
n
v
i
r
t
s

European Journal of Operational Research 316 (2024) 295–309
Table 5
Tuning of Perturbation parameters.

(a) Distance deviation with different parameters 𝛾1 and 𝛾2.

𝛾2
𝛾1 1 2 3 4

1 4.19% 1.92% 1.17% 0.93%
2 1.51% 1.49% 0.98% 1.33%
4 1.49% 1.13% 1.59% 1.28%
6 1.83% 1.19% 1.25% 1.63%
8 1.37% 1.49% 1.66% 1.75%

(b) Runtime versus number of iterations.

𝑖𝑡𝑀𝑎𝑥 Unserved customers (𝛥) Distance (𝛥) Time (s)

0 0.22 10.39% 1.9
1 0.20 9.41% 2.9
10 0.06 6.65% 13.5
20 0.06 5.16% 24.6
50 0.02 3.45% 58.1
100 0.04 1.92% 111.1
200 0.04 1.06% 220.1
400 0.04 0.00% 437.1
Table 6
Comparison of heuristics on Class A instances.

Algorithm Unserved customers (𝛥) Distance (𝛥) Time (s) Best (#)

ConstructRoutes 0.48 12.7% 0.7 38/50
Improvement 0.18 8.2% 1.7 42/50
Perturbation 0.00 0.1% 111.4 50/50
P

t
g
s

C

f
u
T
o
t
r
t
i
C
o

C

5
s
g
(
P
t
t
p
b
p
0
C
a
S
c

6

O
c
c
O
s

of 5 vehicles per day. For Calgary, the company delivers in 44 postal
codes with an average of 469 customers per week and a fleet of 6
vehicles per day. The vehicle capacity is 1100. A data analysis shows
that the number of customers per week follows a Poisson distribution.
However, instead of randomly generating customers, we randomly pick
them from the bank of 80 000 deliveries. A set of 200 scenarios is
created to be used in the optimization, and another set of 400 scenarios
is generated to calculate the expected number of unserved customers
and distance deviation. Postal codes are highly heterogeneous: some
zones require more than 12 h of work per week, others less than 2 h.
All vehicles are available from 8 AM to 6 PM.

6.2. Perturbation parameter setting and performance

First, we test different values for Perturbation parameters to tune
them. Then, we evaluate its performance by comparing it with the other
heuristics in Section 5 and with the CPLEX solver.

Perturbation parameter tuning
Table 5(a) presents the results of different combinations of values

of 𝛾1 and 𝛾2 in the meta-heuristic Perturbation. We recall that 𝛾1 and
2 correspond to the maximum values that the two parameters 𝛼1 and
2, controlling the two inner loops of the meta-heuristic, can reach,
espectively. We run the algorithm for exactly 10 min on Groups 1
nd 2, 20 min on Groups 3 and 4, and 40 min on the remaining
roups 5–10 in Class A. Each table entry contains the distance
ercentage deviation to the best solution value found. Despite being
little counter-intuitive, it is evident from the findings that it is more

onvenient, in terms of the smallest percentage deviation, to move only
single time window more times rather than many time windows at

he same time. The best combination of the two parameters controlling
he two inner loops of Perturbation is thus given by 𝛾1 = 1 and 𝛾2 = 4.

Next, we conduct a second group of tests to evaluate the evolution of
he objective function value when increasing the number of iterations
𝑡𝑀𝑎𝑥 in the Perturbation heuristic without setting any time limit.
able 5(b) reports the results, where the first column provides the
umber of iterations (value 0 means the algorithm consists only of the
onstructive method and the local search heuristic), the second and the
hird columns show the deviation in terms of the number of unserved
ustomers and distance from the best solution, respectively. The last
olumn provides the average runtime (in seconds). Performing a limited
umber of iterations has a minimal impact on enhancing the solution
alue. However, when 𝑖𝑡𝑀𝑎𝑥 = 100 iterations, the results significantly
mprove while maintaining a reasonable computational time. The total
untime strongly depends on the number of scenarios and is equal to
he time reported in the fourth column multiplied by the number of
cenarios. Thus, we decide to set 𝑖𝑡𝑀𝑎𝑥 to 100 iterations.
304
erturbation performance
To assess performance in terms of solution quality and computa-

ional times, we first compare Perturbation against the heuristic al-
orithms discussed in Section 5 on Class A instances. Then, on the
maller Class B instances, we use the CPLEX solver as a benchmark.

omparison with ConstructRoutes and Improvement
In Table 6, we evaluate how the Perturbation meta-heuristic of the

irst stage can positively impact second-stage solutions, rather than
sing only ConstructRoutes heuristic or the local-search Improvement.
he first column indicates the algorithm, whereas the second and third
nes are the deviation with the best number of unserved customers and
he percentage distance deviation. The last two columns indicate the
unning time and the number of times the algorithm finds the best solu-
ion. We observe that using the Perturbation meta-heuristic significantly
mproves the second-stage solutions, always finding the best solutions.
onstructRoutes and Improvement obtain an average distance deviation
f 12.7% and 8.2% worse than Perturbation, respectively.

omparison with CPLEX
Here, we test Perturbation on Class B instances having up to

scenarios. We set the time limit for CPLEX to 1 h. Table 7(a)
hows the results for each group. Column ‘‘𝛥𝑃 ’’ reports the percentage
ap (𝑈𝐵𝑃 − 𝐵𝐾𝑆)∕𝐵𝐾𝑆 between the solution found by Perturbation
𝑈𝐵𝑃) and the best-known solution (𝐵𝐾𝑆) found by either CPLEX or
erturbation itself. The column ‘‘Time (s)’’ is the average time out of
he instances on each group. Regarding CPLEX, ‘‘Opt (#)’’ indicates
he number of instances solved to optimality, whereas ‘‘Gap’’ is the
ercentage difference between the best-known solution and the lower
ound computed by the solver (𝐿𝐵), i.e., (𝐵𝐾𝑆−𝐿𝐵)∕𝐿𝐵. Perturbation
erforms very well on all groups of instances with an average 𝛥 of
.03%, and a time two orders of magnitude lower than CPLEX. Indeed,
PLEX already struggles even with a very small number of scenarios,
s highlighted in Table 7(b). To tackle complex problems such as the
MTWAP, the adoption of meta-heuristics like Perturbation becomes a
rucial requirement.

.3. Second-stage parameter setting and performance

This section analyzes the impact of the different components of
ptimizeRoutes. Results are shown in Table 8, where the first line
orresponds to the initial routes obtained with ConstructRoutes. We
onsider the performance of the Improvement local-search methods (2-
pt* and Relocate), first tested separately and then together. Instead,

ince the number of iterations has a major impact on the quality of the

J.-F. Côté et al.

t
s

European Journal of Operational Research 316 (2024) 295–309
Table 7
Perturbation performance against CPLEX on Class B instances.

(a) Performance by groups.

Perturbation CPLEX

Group 𝛥𝑃 Time (s) Opt (#) Gap Time (s)

1 0.00% 5.4 25 0.00% 0.9
2 0.00% 8.6 25 0.00% 14.2
3 0.12% 10.4 21 0.78% 595.3
4 0.00% 12.5 20 1.77% 753.9
5 0.02% 15.4 14 4.68% 1722.9
6 0.00% 29.5 9 7.28% 2421.8
7 0.00% 25.4 7 7.20% 2765.7
8 0.17% 31.8 22 0.90% 610.1
9 0.03% 21.7 13 1.54% 1720.8
10 0.00% 40.0 2 19.82% 3514.8

Total/Avg. 0.03% 20.1 158 3.15% 1412.0

(b) Performance by number of scenarios.

Scenarios Perturbation CPLEX

(#) 𝛥𝑃 Time (s) Opt (#) Gap Time (s)

1 0.06% 5.8 46 13.33% 447.4
2 0.01% 13.1 36 8.10% 1078.8
3 0.02% 20.2 29 8.71% 1513.7
4 0.09% 27.2 26 8.81% 1857.7
5 0.01% 34.1 21 7.78% 2162.6
Table 8
Testing different components of OptimizeRoutes and their combination on Class A instances.

Unserved Distance Time
Configuration customers (𝛥) (𝛥) (s)

ConstructRoutes 1.22 0.00% 8.1
2-Opt* 0.58 −8.86% 8.5
Relocate 0.66 −10.59% 9.1
Improvement (Relocate & 2-Opt*) 0.52 −12.56% 9.7

ALNS 25 0.06 −18.84% 33.0
ALNS 50 0.04 −19.51% 55.5
ALNS 100 0.02 −20.30% 103.3
ALNS 200 0.04 −20.68% 198.1
ALNS 400 0.02 −21.63% 377.0

ALNS 25 & Improvement 0.02 −20.79% 36.5
ALNS 50 & Improvement 0.02 −21.11% 62.7
ALNS 100 & Improvement 0.00 −21.56% 112.5
ALNS 200 & Improvement 0.00 −21.46% 213.4
ALNS 400 & Improvement 0.04 −22.11% 416.7
solution and on the running time, we test ALNS with 25, 50, 100, 200,
and 400 iterations, with and without the Improvement methods.

In terms of the number of unserved customers (second column), the
best configurations are ALNS 100 or 200 & Improvement. Each other
entry reports the absolute difference with respect to these best solu-
tions. Column ‘‘Distance (𝛥)’’ contains the percentage deviation of each
configuration with respect to the initial solution value obtained with
ConstructRoutes. The last column indicates the average computational
times.

Employing ALNS enhances solution quality at the cost of increased
runtime. Improvement plays a valuable role in qualifying the initial
routes, yet ALNS remains indispensable for achieving performing out-
comes. Superior results in terms of distance are achieved by combining
both components and running ALNS for 400 iterations. However, this
configuration is impractical when dealing with 200 scenarios as it
would lead to a computation time of 9000 s. Moreover, it provides a
limited improvement with respect to 100 or 200 iterations. As observed
above, ALNS 100 or 200 & Improvement are equivalent in terms of num-
ber of unserved customers. However, doubling the number of iterations
to 200 increases the runtime for a marginal increase in solution quality.
Thus, 100 iterations strike a reasonable balance between quality and
computational time.

6.4. Value of the stochastic solution

Hereafter, we evaluate the relevance of the stochastic solution by
assessing the performance of SAAM over the Class A instances. To
his aim, we generate a large set of 1000 scenarios, partitioned into

̄
ample sets of size |𝑆| = 5, 25, 50, 100, 200. We set the number of

305
replications 𝑀 to 1000∕|�̄�| and the size of the estimator �̂� to 500. The
number of iterations 𝑖𝑡𝑀𝑎𝑥 of Perturbation was set to 20, instead of
100, only for large-size Groups 6–10, so to conclude all tests in five days
of computation. Additionally, we examine the potential advantages of
approaching the problem through a stochastic programming method
compared to a deterministic one. To this aim, we run Perturbation on
the expected scenario �̄�, obtain the solution �̄�, and assess its cost with
an estimator set of 500 scenarios.

Table 9(a) summarizes the results over all instances for different
values of |�̄�| and 𝑀 , and entries represent the number of unserved
customers. Columns contain the values of the lower bound �̄�𝑚, the best
solution found �̂�(𝑦∗), and the average estimated solution cost. The best
values are underlined.

We remark that �̄�𝑚 does not necessarily represent a valid lower
bound as it may overestimate the optimal value of each replication.
Thus, some values of the best solutions are lower than the correspond-
ing lower bounds. We note that the lower-bound quality is low for
smaller values of |�̄�| and improves for higher values, reaching its peak
with |�̄�| = 200. The difference between the best solution and the lower
bound is small for Groups 1–6 and samples with |�̄�| ≥ 50. However,
for larger instances, this gap widens due to the increased difficulty.
Next, we observe that for Groups 1–6, best solutions are obtained with
a relatively small value of |�̄�|, whereas, for Groups 7–10, these are
obtained with |�̄�| = 200. This can be attributed to the generation of
a higher number of solutions, increasing the likelihood of finding a
good one among, for instance, 200 or 400 solutions. Since all tests are
executed within a similar duration, it appears more effective on smaller
instances to conduct as many replications as possible. However, for

large instances, the best quality can be achieved with a higher number

J.-F. Côté et al.

w

u

European Journal of Operational Research 316 (2024) 295–309
Table 9
Evaluation of the SAAM on Class A instances.

(a) Results for several values of |�̄�| and 𝑀 .

LB �̄�𝑚 Best �̂�(𝑦∗) Avg.

|�̄�| 5 25 50 100 200 5 25 50 100 200 5 25 50 100 200
Group \𝑀 200 40 20 10 5 200 40 20 10 5 200 40 20 10 5

1 2.49 2.93 3.06 3.11 3.14 3.22 3.23 3.23 3.24 3.26 3.53 3.39 3.37 3.33 3.32
2 3.18 3.88 4.01 4.08 4.09 4.07 4.05 4.06 4.04 4.08 4.69 4.38 4.29 4.20 4.17
3 4.25 4.98 5.18 5.31 5.40 5.26 5.35 5.38 5.35 5.39 5.73 5.56 5.56 5.51 5.49
4 0.03 0.10 0.17 0.23 0.28 0.33 0.35 0.37 0.36 0.37 0.96 0.48 0.47 0.45 0.43
5 0.97 1.53 1.70 1.83 1.89 1.94 1.95 1.92 1.98 1.96 2.63 2.33 2.25 2.21 2.11
6 0.28 1.08 1.38 1.56 1.68 1.73 1.82 1.80 1.84 1.78 2.74 2.36 2.24 2.15 2.01
7 1.22 2.68 3.16 3.49 3.68 4.53 4.40 4.38 4.34 4.31 5.63 4.91 4.77 4.66 4.55
8 0.80 2.64 3.24 3.74 3.94 5.10 4.72 4.64 4.55 4.51 6.63 5.42 5.13 4.94 4.87
9 1.12 3.49 4.36 4.91 5.34 6.56 6.43 6.33 6.22 6.11 8.10 7.03 6.80 6.64 6.42
10 4.09 7.05 8.03 8.67 8.97 11.21 10.62 10.62 10.46 10.34 12.81 11.43 11.08 10.82 10.67

Avg. 1.84 3.04 3.43 3.69 3.84 4.40 4.29 4.27 4.24 4.21 5.35 4.73 4.60 4.49 4.40

(b) Stochastic approach versus deterministic approach.

SAAM Expected Scenario Gap

Group LB �̄�𝑚 Best �̂�(𝑦∗) Avg. STD Time (hrs) 𝐶(�̄�, �̄�) �̂�(�̄�) Time (hrs)

1 3.14 3.22 3.32 0.05 1.4 0.00 3.41 0.00 0.19
2 4.09 4.04 4.17 0.09 5.4 2.00 4.41 0.01 0.37
3 5.40 5.26 5.49 0.09 8.0 4.00 5.81 0.01 0.55
4 0.28 0.33 0.43 0.06 5.5 0.00 1.78 0.02 1.46
5 1.89 1.92 2.11 0.13 9.6 0.00 2.82 0.02 0.91
6 1.68 1.73 2.01 0.21 6.6 0.00 3.38 0.02 1.65
7 3.68 4.31 4.55 0.20 11.0 0.00 6.95 0.04 2.64
8 3.94 4.51 4.87 0.29 19.9 0.00 9.20 0.09 4.69
9 5.34 6.11 6.42 0.24 23.0 0.00 12.06 0.10 5.95
10 8.97 10.34 10.67 0.27 30.5 0.20 17.24 0.11 6.90

Avg. 3.84 4.18 4.40 0.16 12.1 0.62 6.71 0.04 2.53

(c) Avg runtime per SAA iteration.

Time (hrs) per iteration

Group\|�̄�| 5 25 50 100 200

1 0.01 0.04 0.07 0.14 0.28
2 0.03 0.14 0.27 0.55 1.08
3 0.04 0.20 0.41 0.81 1.59
4 0.03 0.14 0.27 0.53 1.03
5 0.05 0.24 0.48 0.96 1.89
6 0.03 0.16 0.34 0.69 1.38
7 0.05 0.27 0.56 1.14 2.34
8 0.09 0.49 1.03 2.10 4.21
9 0.10 0.58 1.18 2.43 4.76
10 0.14 0.75 1.54 3.20 6.45
of scenarios. The average solution quality improves with higher values
of |�̄�|. Indeed, average best results for all instance groups are obtained

ith |�̄�| = 200.
Table 9(b) compares the best values obtained in Table 9(a) (cf.

nderlined entries for ‘‘LB �̄�𝑚’’, ‘‘Best �̂�(𝑦∗)’’, and ‘‘Avg’’.) using SAAM
versus a deterministic approach. Column ‘‘STD’’ reports the standard
deviation of the |�̄�| and 𝑀 having the best average solution, whereas
column ‘‘Time (hrs)’’ contains the computation time in hours. Column
‘‘𝐶(�̄�, �̄�)’’ shows the number of unserved customers in the solution �̄�
when evaluated on the expected scenario. Column ‘‘�̂�(�̄�)’’ shows the
expected optimal cost. The last column, ‘‘Gap’’, measures the difference
between �̂�(�̄�) and the values in the column ‘‘Best �̂�(𝑦∗)’’ (i.e., the differ-
ence between the cost of the deterministic solution and the stochastic
one). For the deterministic approach, we notice that the number of
unserved customers of the expected scenario, 𝐶(�̄�, �̄�), is close to zero for
almost all instance groups, whereas the estimated number of unserved
customers, �̂�(𝑦∗), is significantly higher. As for the gap, in the smallest
instances (Groups 1 to 5), it is relatively small, meaning that, in these
cases, a stochastic approach does not add much value. Instead, for
larger instance groups (Groups 6 to 10), the gap grows very large,
and the stochastic approach becomes significant. However, this im-
provement comes with a remarkably higher computation effort (up to
30.5 h). By looking at the ‘‘Avg’’. columns of Table 9(a), good results
can still be achieved by solving a few SAA problems with |�̄�| = 25 or
50, with a lower computational effort. Finally, in Table 9(c), we report
on the running time in hours per iteration for different values of |�̄�|.
As expected, for each group, the time increases as |�̄�| grows.

6.5. Quality of the service

In this section, we evaluate the quality of service of the solutions
obtained by our approach by investigating the following aspects: the
number and duration of time windows, the number of drivers per day,
and their impact on transportation costs and the number of unserved
customers.
306
Impact evaluation of time windows variation
In Section 6.4, we employed 3-h time windows. Nevertheless, com-

panies may be interested in enhancing customer service by using
narrower time windows. We assume that the quality of service dete-
riorates as the width of the time windows increases. Indeed, wider
time windows imply higher waiting times and are usually less preferred
by customers who do not like to wait at home for several hours. In
contrast, with shorter time windows (e.g., 1 h), customers might be
more satisfied, but this level of satisfaction may come at an increased
transportation cost for the company. Each new offered time window is
a possible additional trip to the zone that might increase transportation
costs. Special care must be given when selecting the time window width
since changing size might imply a reduction of the overall work time
in a zone. Table 10(a) shows this phenomenon. Each entry indicates
the expected free time in minutes available in each zone, computed as
follows:

Free Time = (# Time Windows per Zone × TW Width) − 𝐿∗
𝑧 . (26)

For example, consider Group 3 with a work time of 148.1 min. The
free time with 4-h time windows is equal to 91.9 min. Then, it goes
down to 31.9 min with 3-h time windows and back up to 91.9 min for 2-
h time windows. In practice, this means we might be able to serve more
customers with shorter time windows. Another phenomenon might also
happen when offering two time windows of width 𝑣 versus a single one
of size 2𝑣. Since the two shorter time windows must be on different
days, having twice the number of drivers available can impact the
number of unserved customers. For these reasons, tuning the time
window width should be carefully done to achieve the best results
in terms of transportation costs and number of unserved customers.
Table 10(b) indicates the number of time windows in each scenario
for each possible time window width (i.e., from spanning an entire day
up to 1-h width).

In Table 10(c), we analyze the impact of different time window
widths. We execute our meta-heuristic using the same parameter values
as before. First, we generate a single set of 200 scenarios for which

J.-F. Côté et al.

a
r
t
a
t
w
p
e
w
a
r
c
t
s
d
h
t
c
p
t

European Journal of Operational Research 316 (2024) 295–309
Table 10
Quality of service in solutions to Class A instances.

(a) Free time per different time window width.

Group Work time (min) All-day 5 h 4 h 3 h 2 h 1.5 h 1 h

1 166.3 433.7 133.7 73.7 13.7 73.7 13.7 13.7
2 162.5 437.5 137.5 77.5 17.5 77.5 17.5 17.5
3 148.1 451.9 151.9 91.9 31.9 91.9 31.9 31.9
4 146.6 453.4 153.4 93.4 33.4 93.4 33.4 33.4
5 166.2 433.8 133.8 73.8 13.8 73.8 13.8 13.8
6 170.4 429.6 129.6 69.6 9.6 69.6 9.6 9.6
7 327.1 272.9 272.9 152.9 32.9 32.9 32.9 32.9
8 336.5 263.5 263.5 143.5 23.5 23.5 23.5 23.5
9 464.2 135.8 135.8 15.8 75.8 15.8 75.8 15.8
10 390.5 209.5 209.5 89.5 149.5 89.5 59.5 29.5

(b) Number of time windows per different width.

Group Days Work TWs per Width (#)

(#) Time (min) All-day 5 h 4 h 3 h 2 h 1.5 h 1 h

1 2 166.3 1 1 1 1 2 2 3
2 2 162.5 1 1 1 1 2 2 3
3 2 148.1 1 1 1 1 2 2 3
4 2 146.6 1 1 1 1 2 2 3
5 2 166.2 1 1 1 1 2 2 3
6 3 170.4 1 1 1 1 2 2 3
7 3 327.1 1 2 2 2 3 4 6
8 4 336.5 1 2 2 2 3 4 6
9 5 464.2 1 2 2 3 4 6 8
10 5 390.5 1 2 2 3 4 5 7

(c) Cost of time windows.

TW Unserved Distance Time
width customers (#) (𝛥) (hrs)

All Day 3.26 0.0% 0.2
5 h 3.69 12.8% 1.9
4 h 3.79 14.3% 2.2
3 h 4.28 19.0% 2.5
2 h 5.82 37.3% 2.3
1.5 h 8.06 43.2% 1.3
1 h 12.76 48.6% 1.4
Table 11
Results when varying the number of working hours or drivers available daily.

(a) Impact evaluation when changing the number of daily working hours.

Hours Unserved Distance Time
variation customers (#) (𝛥) (hrs)

−2 h 21.47 −16.8% 2.2
−1 h 10.44 −6.8% 2.6
Base case 4.28 0.0% 2.5
+1 h 1.71 3.2% 3.2
+2 h 0.97 2.4% 3.4

(b) Impact evaluation when changing the daily number of available drivers.

Drivers Unserved Distance Time
variation customers (#) (𝛥) (hrs)

−2 23.45 −34.8% 4.3
−1 14.44 −23.8% 4.3
Base case 4.28 0.0% 2.5
+1 1.33 9.9% 3.4
+2 0.57 5.2% 5.1
we find the best solution. Then, we estimate the expected transporta-
tion costs on a set of 400 scenarios. The first column provides the
width of the time windows. Columns ‘‘Unserved Customers (#)’’ and
‘‘Distance (𝛥)’’ provide the average number of unserved customers
nd the average percentage deviation in terms of traveled distance,
espectively. We notice that the distance deviation increases as the
ime window width decreases. The number of unserved customers
lso slightly increases when moving from the All-Day time windows
o 3-h time windows. However, when shifting from 3-h to 1-h time
indows, the number of unserved customers significantly rises. This
henomenon occurs because there are more time windows available,
ach with a shorter duration, and, in most cases, no additional time
indows are introduced. With shorter time windows, drivers tend to
llocate a significant portion of their time to traveling between zones
ather than serving customers. Additionally, the presence of unserved
ustomers in the solutions mainly depends on the use of Eq. (25)
o define the number of time windows per zone rather than being
trictly correlated with customers’ demand or their distance from the
epot. Also, it is possible that, in some zones for certain scenarios, a
igher number of customers may appear with service times that exceed
he average values. In such a case, the probability of not serving all
ustomers increases because we allow at most a time window per day
er zone, i.e., time constraint is more binding. In terms of computing
ime, we note that this does not increase as the time window width
307
decreases. When very few time windows are offered, increasing their
number can indeed affect the computing time because the number of
global schedules increases as well. Beyond a certain point, adding more
time windows reduces the computing time, as there are fewer global
schedules.

To conclude, the insight we can gain from these observations is
that offering shorter time windows (e.g., 1.5-h width) may increase
customer satisfaction while reducing drivers’ free time. However, it
would also increase the number of unserved customers and the distance
traveled.

Impact evaluation of daily working hours and driver availability
The quality of customer service is not only influenced by the quan-

tity and the duration of the time windows, it can also be impacted by
unforeseen events, such as the abrupt unavailability of a driver or the
impossibility of completely exploiting all available daily working hours.
Conversely, a company may also be interested in assessing the potential
improvements that could be achieved by hiring additional drivers or
increasing their daily working time, always complying with existing
regulations. The purpose of these experiments, summarized in Table 11,
is to show what would happen by varying the number of working hours
or drivers available daily.

In Table 11(a), the first column indicates the change in the number
of daily working hours whereas the remaining ones have the usual

J.-F. Côté et al. European Journal of Operational Research 316 (2024) 295–309
Table 12
Results on real-world data corresponding to Class C instances.

Edmonton (49 postal codes) Calgary (44 postal codes)

TWs Unserved Dist. TWs Unserved Dist.
TW configuration (#) customers (#) Distance (𝛥) (#) customers (#) Distance (𝛥)

No TWs – 0.003 3654.0 −23.9% – 0.000 3602.5 −19.7%

3 h 81 0.590 4172.6 −13.1% 81 0.048 4008.3 −10.7%
3 h+1 129 0.642 4818.9 0.4% 125 0.050 4341.6 −3.2%
3 h+2 175 0.503 5141.1 7.1% 166 0.040 4536.6 1.1%
3 h+3 216 0.463 5169.8 7.7% 201 0.030 4645.2 3.5%
3 h+4 245 0.433 5180.8 8.0% 220 0.022 4756.4 6.0%

4 h 65 0.545 4379.8 −8.7% 69 0.035 3862.7 −13.9%
4 h+1 114 0.742 4474.5 −6.8% 113 0.005 4246.5 −5.4%
4 h+2 162 0.612 4759.8 −0.8% 157 0.062 4494.3 0.2%
4 h+3 208 0.363 5067.8 5.6% 197 0.022 4624.2 3.1%
4 h+4 245 0.350 5044.4 5.1% 220 0.013 4709.4 5.0%

6 h 58 0.797 4218.1 −12.1% 53 0.098 3737.5 −16.7%
6 h+1 107 0.537 4547.7 −5.2% 97 0.082 4137.6 −7.8%
6 h+2 156 0.510 4866.6 1.4% 141 0.050 4400.6 −1.9%
6 h+3 204 0.468 4908.7 2.3% 185 0.007 4560.0 1.6%
6 h+4 245 0.313 4982.2 3.8% 220 0.013 4613.2 2.8%

1 All-Day 50 0.405 3848.4 −19.8% 44 0.075 3754.8 −16.3%
2 All-Day 99 0.595 4299.5 −10.4% 88 0.052 4093.6 −8.8%
3 All-Day 148 0.552 4620.8 −3.7% 132 0.093 4252.1 −5.2%
4 All-Day 197 0.415 4712.5 −1.8% 176 0.005 4410.4 −1.7%
5 All-Day (Company) 245 0.348 4798.9 0.0% 220 0.015 4486.9 0.0%
meaning. We can observe a trade-off between the number of unserved
customers and the distance deviation. As expected, a reduction in the
number of daily working hours leads to a higher average number of
unserved customers as the traveled distance decreases. Conversely, the
addition of extra time yields intriguing findings. Even with a two-
hour daily extension, there is still one unserved customer on average.
Anyway, the distance deviation is lower when adding two hours com-
pared with the value observed when adding just one hour. Table 11(b)
has a similar structure. The only difference is in the first column,
which contains the change in the number of drivers available daily.
The observations we can make are similar to those from Table 11(a).
By considering both analyses together, we derive the insight that it is
preferable to hire more drivers than make the current ones work one
or two hours more each day.

6.6. Application to real-world data

The focus of this last part is to apply the Perturbation meta-heuristic
and evaluate its performance on the real-world data of the application
motivating our study.

For each possible time window width (3, 4, 6 h, and All Day),
we compute the number of time windows by applying Eq. (25). By
using these values, we notice that several postal codes requiring a few
working hours obtain only a single time window. Thus, to give more
choices to customers, we test the case with 1, 2, 3, and 4 additional time
windows per each zone. For example, ‘‘3 h+2’’ refers to the number of
time windows obtained using Eq. (25) with a width of 3 h plus two
additional time windows. A No Time Windows test is made to know the
minimum possible cost. All tests are run for 36 h, and all distances are
computed by using the Haversine formula.

Results are presented in Table 12. The first column is the time win-
dow configuration. For each delivery region, the table shows the total
number of time windows, the expected number of unserved customers,
the expected distances, and their percentage deviation compared with
the company’s approach (last line). The following insights can be
derived. (i) Fewer and wider time windows can lead to more efficient
routes and reduce travel distances, which can result in cost savings
and improve the operational efficiency of the company. With wider
time windows, certainly drivers would need to make fewer trips within
308
postal code areas. Consequently, this reduction in the number of trips
would lead to cost savings. Furthermore, as the time window size
increases, there is greater flexibility and possibility for route optimiza-
tion. (ii) Limiting the number of delivery dates could be beneficial for
the company. Instead of offering any delivery date, the company may
choose to propose deliveries on four out of five days. This adjustment
could lead to reducing distances by 1.8% in the Edmonton region and
1.7% in the Calgary one. Reducing the number of delivery days would
yield more significant decreases. (iii) Reductions in distance traveled
can be obtained using a 3, 4, or 6-h time window configuration com-
pared with the company’s policy of five delivery days, because fewer
trips are made to each postal code. These configurations with one extra
time window can also be advantageous. (iv) Choosing the time window
setting remains a managerial decision because of a trade-off between
transportation costs and customer satisfaction. If the company adopts
a different policy by allowing the choice of delivery time windows, it
could use the 4h+2 configuration at no additional cost. In this way,
customers in the Edmonton and Calgary regions would get 162∕49 = 3.3
and 157∕44 = 3.6, respectively, time windows per week on average.

7. Conclusions

In this paper, we introduce a new problem called the Stochas-
tic Multi-period Time Window Assignment Vehicle Routing Problem.
Customers are distributed into a grid of zones, and their locations,
demands, and service times are stochastic and evaluated through a set
of possible scenarios based on historical data. The aim is to build a
schedule that assigns a set of time windows to each zone during a plan-
ning period of a week by minimizing the total expected transportation
costs plus a penalty cost for each unserved customer. Formulating the
problem as a two-stage stochastic program, we propose a solution ap-
proach based on a Sample Approximation Average Method, exploiting
a perturbation meta-heuristic in the first stage and an Adaptive Large
Neighborhood Search framework in the second stage. To evaluate the
effectiveness and the efficiency of the proposed solution method, we
generate three sets of benchmark instances (two randomly and one
from real-world data) with a different number of zones, customers, and
scenarios. Results are promising: the approach represents a valuable
tool for the industrial case motivating the study.

J.-F. Côté et al.

A

D

J

K

European Journal of Operational Research 316 (2024) 295–309
In future research, the model could consider the number of visits per
zone as a variable rather than a parameter. Indeed, the frequency of vis-
its to each zone undoubtedly determines a trade-off between customer
satisfaction and traveling costs: larger values would increase customer
satisfaction but also traveling costs because of requests disaggregation.

Acknowledgments

This work was partly supported by the Canadian Natural Sciences
and Engineering Research Council (NSERC) under grants 2021-00028.
We thank the Digital Research Alliance of Canada for providing high-
performance computing facilities. We also thank the anonymous ref-
erees for their helpful comments that improved the quality of the
manuscript.

References

Agatz, N., Campbell, A., Fleischmann, M., & Savelsbergh, M. (2011). Time slot
management in attended home delivery. Transportation Science, 45(3), 435–449.

gatz, N., Fan, Y., & Stam, D. (2021). The impact of green labels on time slot
choice and operational sustainability. Production and Operations Management, 30(7),
2285–2303.

Campbell, A. M., & Savelsbergh, M. (2005). Decision support for consumer direct
grocery initiatives. Transportation Science, 39(3), 313–327.

Campbell, A. M., & Savelsbergh, M. (2006). Incentive schemes for attended home
delivery services. Transportation Science, 40(3), 327–341.

almeijer, K., & Desaulniers, G. (2021). Addressing orientation symmetry in the time
window assignment vehicle routing problem. INFORMS Journal on Computing, 33(2),
495–510.

Dalmeijer, K., & Spliet, R. (2018). A branch-and-cut algorithm for the time window
assignment vehicle routing problem. Computers & Operations Research, 89, 140–152.

Ehmke, J. F., & Campbell, A. M. (2014). Customer acceptance mechanisms for home
deliveries in metropolitan areas. European Journal of Operational Research, 233,
193–207.

Farias, V. F., Jagabathula, S., & Shah, D. (2013). A nonparametric approach to modeling
choice with limited data. Management Science, 59(2), 305–322.

Figliozzi, M. A. (2008). Planning approximations to the average length of vehi-
cle routing problems with varying customer demands and routing constraints.
Transportation Research Record, 2089(1), 1–8.

Groër, C., Golden, B., & Wasil, E. (2009). The consistent vehicle routing problem.
Manufacturing & Service Operations Management, 11(4), 630–643.

Hernandez, F., Gendreau, M., & Potvin, J.-Y. (2017). Heuristics for tactical time slot
management: A periodic vehicle routing problem view. International Transactions in
Operational Research, 24(6), 1233–1252.
309
Hoogeboom, M., Adulyasak, Y., Dullaert, W., & Jaillet, P. (2021). The robust vehicle
routing problem with time window assignments. Transportation Science, 55(2),
395–413.

alilvand, M., Bashiri, M., & Nikzad, E. (2021). An effective progressive hedging
algorithm for the two-layers time window assignment vehicle routing problem in
a stochastic environment. Expert Systems with Applications, 165, Article 113877.

leywegt, A. J., Shapiro, A., & Homem-de Mello, T. (2002). The sample average approx-
imation method for stochastic discrete optimization. SIAM Journal on Optimization,
12(2), 479–502.

Köhler, C., Ehmke, J. F., & Campbell, A. M. (2020). Flexible time window management
for attended home deliveries. Omega, 91, Article 102023.

Lin, I. I., & Mahmassani, H. S. (2002). Can online grocers deliver?: Some logistics
considerations. Transportation Research Record, 1817(1), 17–24.

Madsen, O. B., Tosti, K., & Vælds, J. (1995). A heuristic method for dispatching repair
men. Annals of Operations Research, 61(1), 213–226.

Mak, W.-K., Morton, D. P., & Wood, R. K. (1999). Monte Carlo bounding techniques
for determining solution quality in stochastic programs. Operations Research Letters,
24(1–2), 47–56.

Manerba, D., Mansini, R., & Zanotti, R. (2018). Attended home delivery: Reducing
last-mile environmental impact by changing customer habits. IFAC-PapersOnLine,
51(5), 55–60.

Potvin, J.-Y., & Rousseau, J.-M. (1993). A parallel route building algorithm for the
vehicle routing and scheduling problem with time windows. European Journal of
Operational Research, 66(3), 331–340.

Potvin, J.-Y., & Rousseau, J.-M. (1995). An exchange heuristic for routeing problems
with time windows. Journal of the Operational Research Society, 46(12), 1433–1446.

Ropke, S., & Pisinger, D. (2006). An adaptive large neighborhood search heuristic for
the pickup and delivery problem with time windows. Transportation Science, 40(4),
455–472.

Savelsbergh, M. (1992). The vehicle routing problem with time windows: Minimizing
route duration. INFORMS Journal on Computing, 4(2), 146–154.

Spliet, R., Dabia, S., & Van Woensel, T. (2018). The time window assignment vehicle
routing problem with time-dependent travel times. Transportation Science, 52(2),
261–276.

Spliet, R., & Desaulniers, G. (2015). The discrete time window assignment vehicle
routing problem. European Journal of Operational Research, 244(2), 379–391.

Spliet, R., & Gabor, A. F. (2015). The time window assignment vehicle routing problem.
Transportation Science, 49(4), 721–731.

Stenger, A., Vigo, D., Enz, S., & Schwind, M. (2013). An adaptive variable neighborhood
search algorithm for a vehicle routing problem arising in small package shipping.
Transportation Science, 47(1), 64–80.

Subramanyam, A., Wang, A., & Gounaris, C. E. (2018). A scenario decomposi-
tion algorithm for strategic time window assignment vehicle routing problems.
Transportation Research, Part B (Methodological), 117, 296–317.

Yu, X., Shen, S., Badri-Koohi, B., & Seada, H. (2023). Time window optimization for
attended home service delivery under multiple sources of uncertainties. Computers
& Operations Research, 150.

http://refhub.elsevier.com/S0377-2217(24)00040-7/sb1
http://refhub.elsevier.com/S0377-2217(24)00040-7/sb1
http://refhub.elsevier.com/S0377-2217(24)00040-7/sb1
http://refhub.elsevier.com/S0377-2217(24)00040-7/sb2
http://refhub.elsevier.com/S0377-2217(24)00040-7/sb2
http://refhub.elsevier.com/S0377-2217(24)00040-7/sb2
http://refhub.elsevier.com/S0377-2217(24)00040-7/sb2
http://refhub.elsevier.com/S0377-2217(24)00040-7/sb2
http://refhub.elsevier.com/S0377-2217(24)00040-7/sb3
http://refhub.elsevier.com/S0377-2217(24)00040-7/sb3
http://refhub.elsevier.com/S0377-2217(24)00040-7/sb3
http://refhub.elsevier.com/S0377-2217(24)00040-7/sb4
http://refhub.elsevier.com/S0377-2217(24)00040-7/sb4
http://refhub.elsevier.com/S0377-2217(24)00040-7/sb4
http://refhub.elsevier.com/S0377-2217(24)00040-7/sb5
http://refhub.elsevier.com/S0377-2217(24)00040-7/sb5
http://refhub.elsevier.com/S0377-2217(24)00040-7/sb5
http://refhub.elsevier.com/S0377-2217(24)00040-7/sb5
http://refhub.elsevier.com/S0377-2217(24)00040-7/sb5
http://refhub.elsevier.com/S0377-2217(24)00040-7/sb6
http://refhub.elsevier.com/S0377-2217(24)00040-7/sb6
http://refhub.elsevier.com/S0377-2217(24)00040-7/sb6
http://refhub.elsevier.com/S0377-2217(24)00040-7/sb7
http://refhub.elsevier.com/S0377-2217(24)00040-7/sb7
http://refhub.elsevier.com/S0377-2217(24)00040-7/sb7
http://refhub.elsevier.com/S0377-2217(24)00040-7/sb7
http://refhub.elsevier.com/S0377-2217(24)00040-7/sb7
http://refhub.elsevier.com/S0377-2217(24)00040-7/sb8
http://refhub.elsevier.com/S0377-2217(24)00040-7/sb8
http://refhub.elsevier.com/S0377-2217(24)00040-7/sb8
http://refhub.elsevier.com/S0377-2217(24)00040-7/sb9
http://refhub.elsevier.com/S0377-2217(24)00040-7/sb9
http://refhub.elsevier.com/S0377-2217(24)00040-7/sb9
http://refhub.elsevier.com/S0377-2217(24)00040-7/sb9
http://refhub.elsevier.com/S0377-2217(24)00040-7/sb9
http://refhub.elsevier.com/S0377-2217(24)00040-7/sb10
http://refhub.elsevier.com/S0377-2217(24)00040-7/sb10
http://refhub.elsevier.com/S0377-2217(24)00040-7/sb10
http://refhub.elsevier.com/S0377-2217(24)00040-7/sb11
http://refhub.elsevier.com/S0377-2217(24)00040-7/sb11
http://refhub.elsevier.com/S0377-2217(24)00040-7/sb11
http://refhub.elsevier.com/S0377-2217(24)00040-7/sb11
http://refhub.elsevier.com/S0377-2217(24)00040-7/sb11
http://refhub.elsevier.com/S0377-2217(24)00040-7/sb12
http://refhub.elsevier.com/S0377-2217(24)00040-7/sb12
http://refhub.elsevier.com/S0377-2217(24)00040-7/sb12
http://refhub.elsevier.com/S0377-2217(24)00040-7/sb12
http://refhub.elsevier.com/S0377-2217(24)00040-7/sb12
http://refhub.elsevier.com/S0377-2217(24)00040-7/sb13
http://refhub.elsevier.com/S0377-2217(24)00040-7/sb13
http://refhub.elsevier.com/S0377-2217(24)00040-7/sb13
http://refhub.elsevier.com/S0377-2217(24)00040-7/sb13
http://refhub.elsevier.com/S0377-2217(24)00040-7/sb13
http://refhub.elsevier.com/S0377-2217(24)00040-7/sb14
http://refhub.elsevier.com/S0377-2217(24)00040-7/sb14
http://refhub.elsevier.com/S0377-2217(24)00040-7/sb14
http://refhub.elsevier.com/S0377-2217(24)00040-7/sb14
http://refhub.elsevier.com/S0377-2217(24)00040-7/sb14
http://refhub.elsevier.com/S0377-2217(24)00040-7/sb15
http://refhub.elsevier.com/S0377-2217(24)00040-7/sb15
http://refhub.elsevier.com/S0377-2217(24)00040-7/sb15
http://refhub.elsevier.com/S0377-2217(24)00040-7/sb16
http://refhub.elsevier.com/S0377-2217(24)00040-7/sb16
http://refhub.elsevier.com/S0377-2217(24)00040-7/sb16
http://refhub.elsevier.com/S0377-2217(24)00040-7/sb17
http://refhub.elsevier.com/S0377-2217(24)00040-7/sb17
http://refhub.elsevier.com/S0377-2217(24)00040-7/sb17
http://refhub.elsevier.com/S0377-2217(24)00040-7/sb18
http://refhub.elsevier.com/S0377-2217(24)00040-7/sb18
http://refhub.elsevier.com/S0377-2217(24)00040-7/sb18
http://refhub.elsevier.com/S0377-2217(24)00040-7/sb18
http://refhub.elsevier.com/S0377-2217(24)00040-7/sb18
http://refhub.elsevier.com/S0377-2217(24)00040-7/sb19
http://refhub.elsevier.com/S0377-2217(24)00040-7/sb19
http://refhub.elsevier.com/S0377-2217(24)00040-7/sb19
http://refhub.elsevier.com/S0377-2217(24)00040-7/sb19
http://refhub.elsevier.com/S0377-2217(24)00040-7/sb19
http://refhub.elsevier.com/S0377-2217(24)00040-7/sb20
http://refhub.elsevier.com/S0377-2217(24)00040-7/sb20
http://refhub.elsevier.com/S0377-2217(24)00040-7/sb20
http://refhub.elsevier.com/S0377-2217(24)00040-7/sb20
http://refhub.elsevier.com/S0377-2217(24)00040-7/sb20
http://refhub.elsevier.com/S0377-2217(24)00040-7/sb21
http://refhub.elsevier.com/S0377-2217(24)00040-7/sb21
http://refhub.elsevier.com/S0377-2217(24)00040-7/sb21
http://refhub.elsevier.com/S0377-2217(24)00040-7/sb22
http://refhub.elsevier.com/S0377-2217(24)00040-7/sb22
http://refhub.elsevier.com/S0377-2217(24)00040-7/sb22
http://refhub.elsevier.com/S0377-2217(24)00040-7/sb22
http://refhub.elsevier.com/S0377-2217(24)00040-7/sb22
http://refhub.elsevier.com/S0377-2217(24)00040-7/sb23
http://refhub.elsevier.com/S0377-2217(24)00040-7/sb23
http://refhub.elsevier.com/S0377-2217(24)00040-7/sb23
http://refhub.elsevier.com/S0377-2217(24)00040-7/sb24
http://refhub.elsevier.com/S0377-2217(24)00040-7/sb24
http://refhub.elsevier.com/S0377-2217(24)00040-7/sb24
http://refhub.elsevier.com/S0377-2217(24)00040-7/sb24
http://refhub.elsevier.com/S0377-2217(24)00040-7/sb24
http://refhub.elsevier.com/S0377-2217(24)00040-7/sb25
http://refhub.elsevier.com/S0377-2217(24)00040-7/sb25
http://refhub.elsevier.com/S0377-2217(24)00040-7/sb25
http://refhub.elsevier.com/S0377-2217(24)00040-7/sb26
http://refhub.elsevier.com/S0377-2217(24)00040-7/sb26
http://refhub.elsevier.com/S0377-2217(24)00040-7/sb26
http://refhub.elsevier.com/S0377-2217(24)00040-7/sb27
http://refhub.elsevier.com/S0377-2217(24)00040-7/sb27
http://refhub.elsevier.com/S0377-2217(24)00040-7/sb27
http://refhub.elsevier.com/S0377-2217(24)00040-7/sb27
http://refhub.elsevier.com/S0377-2217(24)00040-7/sb27
http://refhub.elsevier.com/S0377-2217(24)00040-7/sb28
http://refhub.elsevier.com/S0377-2217(24)00040-7/sb28
http://refhub.elsevier.com/S0377-2217(24)00040-7/sb28
http://refhub.elsevier.com/S0377-2217(24)00040-7/sb28
http://refhub.elsevier.com/S0377-2217(24)00040-7/sb28
http://refhub.elsevier.com/S0377-2217(24)00040-7/sb29
http://refhub.elsevier.com/S0377-2217(24)00040-7/sb29
http://refhub.elsevier.com/S0377-2217(24)00040-7/sb29
http://refhub.elsevier.com/S0377-2217(24)00040-7/sb29
http://refhub.elsevier.com/S0377-2217(24)00040-7/sb29

	Multi-period time window assignment for attended home delivery
	Introduction
	Literature review
	Problem formulation
	Solution methodology
	SAAM application to SMTWAP

	Solving SAA problems
	First-stage solution
	Local search
	Initial solution
	Perturbation meta-heuristic

	Second-stage solution
	Speed-up techniques

	Experimental evaluation
	Instances
	Perturbation parameter setting and performance
	Perturbation parameter tuning
	Perturbation performance
	Comparison with ConstructRoutes and Improvement
	Comparison with CPLEX

	Second-stage parameter setting and performance
	Value of the stochastic solution
	Quality of the service
	Impact evaluation of time windows variation
	Impact evaluation of daily working hours and driver availability

	Application to real-world data

	Conclusions
	Acknowledgments
	References

