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Abstract. We study a multi-period stochastic variant of the Time Window Assignment 

Vehicle Routing Problem where customer demands, their locations, and service times are 

all non-deterministic. Customers are geographically distributed into zones, and each zone 

has to be visited a given number of times within specified time windows in a defined time 

horizon ({e.g.,} five working days). A fleet of homogeneous vehicles is available to serve 

customers at their homes. At a tactical level, the problem looks for the time windows to 

assign to zones over a time horizon to minimize the expected traveling costs required by 

vehicles to visit the customers plus expected penalty costs for unserved ones. We call this 

problem the Stochastic Multi-period Time Window Assignment Vehicle Routing Problem 

(SMTWAVRP). We propose a two-stage formulation, and a solution approach 

encompassing a perturbation method to manage time windows assignment to zones in the 

first stage, and an Adaptive Large Neighborhood Search (ALNS) framework to optimize 

routes in the second one. Computational results conducted over a large set of instances 

(including some real ones provided by a Canadian company) show that the solution method 

is effective at obtaining good schedules and outperforms the manual solution obtained by 

the company. 

Keywords. Time window assignment, vehicle routing problem, multi-period, stochastic 

programming. 

Acknowledgements. This work was partly supported by the Natural Sciences and 

Engineering Research Council of Canada (NSERC) under grants 2015-04893. We thank 

Calcul Québec for providing high performance parallel computing facilities. 

Results and views expressed in this publication are the sole responsibility of the authors and do not necessarily 
reflect those of CIRRELT. 

Les résultats et opinions contenus dans cette publication ne reflètent pas nécessairement la position du 
CIRRELT et n'engagent pas sa responsabilité. 

 

_____________________________ 
* Corresponding author: Jean-Francois.Cote@cirrelt.ca 

Dépôt légal – Bibliothèque et Archives nationales du Québec 
          Bibliothèque et Archives Canada, 2019 

© Côté, Mansini, Raffaele and CIRRELT, 2019 



1 Introduction

In industrial distribution, one of the main goals is to manage every phase of the logistic process,
trying to efficiently handle critical resources like time. Beyond production, efficiently time manage-
ment is essential above all in the last-mile delivery, when goods or services are provided to end users.
Usually, a company tries to accomplish customer requests guaranteeing a high level of satisfaction
and, simultaneously, to optimize the shipping in terms of costs. The availability of an effective plan
becomes therefore a priority, to optimally settle the delivery service in a daily or weekly horizon. To
build an optimal schedule, the company must know exactly how many customers have to be served,
where they are located and the amount of their orders. Unfortunately, in many real applications as
the home delivery following an e-commerce purchase, such information is not known with certainty
in advance, and only statistics can be used (e.g. probability distributions on past demands and their
locations). In all such cases, finding the optimal schedule is a too complex task, and the goal turns
into looking for a schedule which has a good behavior in every eventuality.

In this paper, we consider a multi-period stochastic variant of the Time Window Assignment
Vehicle Routing Problem introduced by Spliet and Gabor [17] and where time windows have to be
assigned to customers before demand is known. Our problem differs from the latter in many aspects.
First of all, it is reasonable for a company to deliver goods to customers who are in the same streets
at the same time, avoiding if possible to come back to the same place in another moment. For this
reason, we assume that the geographical area of interest is divided into zones defined by zip codes,
and consequently customers are classified, according to their locations, as belonging to a defined
zone. In some cases, customers explicitly ask for deliveries in some particular hours of the day or
in a specific day of the week, and may choose among delivery alternatives offered by the company,
paying more or less according to the option selected. In some other cases, as in the one we are
analyzing, customers do not much care about the delivery time, and may accept to be served in
a time window decided by the supplier. In practice, the company defines some intervals of time
that are assigned to each zone, during which customers belonging to that area can be supplied.
Zones can have a different number of time windows, depending on historical customer demands.
Moreover, according to the type of goods, the delivery service can be performed over a time horizon
of a single day, of a week or a month. In our case, we consider an horizon of five working days, and
the customers typically change week after week. Time windows are assigned to each zone before
knowing not only their requests (demand) but also their location. The assignment decides time
windows distribution over the working days of the time horizon. If a customer cannot be served
during the schedule of its zone, a penalty has to be paid, corresponding to the cost of a backup
delivery accomplished in outsourcing by another company.

Given the zones into which the geographical area is divided, the Stochastic Multi-period Time
Window Assignment Vehicle Routing Problem (SMTWAVRP) decides how to assign a predefined
number of time windows (selected from a candidate set) to each zone, while minimizing the expected
traveling costs required to visit the customers within the allocated time windows plus the expected
penalty costs associated with non-served customers. As far as constraints are concerned, the decision
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maker, once he has decided the set of possible time windows for each zone, establishes how many
times a zone has to be visited during the planning horizon (to provide a guaranteed service level),
and imposes that a zone can be visited at most once per day. Favoring more visits to a zone may
cause a disaggregation of customers which, in turn, increases company costs, but improves customer
satisfaction by allowing more choices. Inversely, setting a smaller number of visits forces aggregation
which decreases costs, but also reduces customer satisfaction. This trade-off is decided by the
decision maker in advance on the basis of available historical data concerning previous purchases
and deliveries. Past information is provided in the form of probability distributions on the number
of customers, their demands and service times for each zone. These distributions allow the creation
of a finite number of scenarios representing realizations of the described random variables. At the
moment of time windows assignment, the supplier knows the probability with which each scenario
occurs.

On the contrary, the supplier does not have any information on the preference of his/her cus-
tomers on when they want their goods to be delivered. Considering customer preferences may lead
to an over-complicated approach, as the probability of selecting a specific time window would also
depend on the ones that are offered. To deal with this lack of information on preferences, we assume
that customers select their time window randomly among the available ones. No cancellation and
rescheduling can happen. Finally, a fixed fleet of vehicles, partitioned over the periods, is available
to make the deliveries.

Motivation

The problem has been motivated by a real case study of a Canadian retailer that sells and delivers
large and heavy items such as furniture and appliances. One of the most unsatisfactory aspects of
home delivery service is frequently related to the way it is planned. There are some companies that
ask their customers to be present at home for an entire day in order to receive required services,
thus causing frustration and disappointment. To increase customers satisfaction some companies
try to provide shorter time windows. Nowadays, several companies (including the one of our case
study) offer weekly schedules to their customers specifying day of the week and time window in
which the service can be accomplished. In our real case, customers can choose any delivery date
successive to the day in which requested furniture is made available at the company depot. Since
that moment, customers will receive their goods in the next 3-5 days. Two days prior to the
delivery date, customers receive a call from an automatic calling machine informing them that the
their delivery will occur in a specific 3 hour time window. According to the retailer, cancellation
and rescheduling occur rarely.

Another reason that motivated our work was that, at present, delivery schedules are made
manually by using maps and push pins and the process requires the employment of several people,
and takes many working days to be completed. Moreover, once obtained, the schedule is usually
reused by the company for several months. The drawbacks of this procedure are evident. The
most important one concerns the sensitivity lack of this handmade schedule to demand changes. A
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strong growth in demand might increase the lateness of this schedule, and thus lowering customer
satisfaction. On the contrary, a demand decrease might render the current schedule inefficient which
in turn will increase costs. The main fallout of this work will be the replacement of the manual
planning process used by the company with a computer-based one focused on advanced algorithms.
Being an automatic approach, the company will be able to rapidly modify the current schedule or
even change it every week.

Contributions

The paper provides several contributions. The vehicle routing problem of serving a set of customers,
after assigning time windows and in presence of stochastic information, has been already treated in
the literature, but never jointly considering the geographical aspect of dealing with zones, the multi-
period nature of the time window assignment problem and the possible loss of earnings (measured
as penalty cost) in case customers are not serviced. This is the first relevant contribution. It is
worth underlying that the problem considers a double level of optimization, since time windows
are assigned to zones to which customers belong, but then the routes have to be built on customer
locations, not on zones. Moreover, whereas in the literature only demand is stochastic in our case
customers location and service times are also non-deterministic. Finally, to tackle the problem, we
introduce a two-stage stochastic formulation with general recourse. The first-stage deals with the
assignment of time windows to zones, whereas the second-stage, when demands and their locations
are already revealed, solves a variant of the VRP with Time Windows (VRPTW) where customers
can be served in different days, and within the time window assigned to their zone in the day of the
service. We also propose effective metaheuristics for the solution of each of the two stages. Provided
solutions largely improve the ones obtained by the manual approach presently used in the company.

The paper is organized as follows. In Section 2, we summarize main literature on attended home
delivery problems and known variants of the Time Window Assignment Vehicle Routing Problem
(TWAVRP). In Section 3, we provide the formal description of the problem, its two-stage definition
and its deterministic equivalent formulation. Section 4 is devoted to the methodology used to tackle
the problem, whereas full details on the algorithms can be found in Section 5, where we examine
in depth the solution method developed for each stage. In particular, a perturbation procedure is
developed for the first stage problem, whereas an ALNS with several destroy and repair methods
is designed for the routing problem in the second stage. In Section 6, we describe the design of
the computational study, present extensive results, and derive some managerial insights. A specific
focus is posed on the analysis of the stochastic value of the solution, and of the quality of the solution
service. The section terminates with the discussion of the results obtained on real instances. Finally,
Section 7 draws main conclusions, and identifies possible future developments.
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2 Literature review

Different lines of research can be associated with last-mile delivery. In the past, a main focus was
put on quantifying factors that may influence on-line shipping with respect to traditional one (Lin
and Mahmassani [9]) or on analyzing accept/refuse policies for attended home delivery customers
to decide if a delivery request can be accommodated or not (Bent and van Hentenryck [2]; Ehmke
and Campbell [5]). Another relevant issue was the introduction of incentive schemes to encourage
customers to select time slots that could lead to lower transportation costs for the supplier (Campbell
and Savelsbergh [4]) or the setting of different delivery prices to influence customer behavior about
the offered time slots, so to maximize overall profit (Klein et al. [10]). Recently, Manerba et al.
[11] have analyzed how the selection of restrictive time windows for home delivery affect last-mile
routing operations and negatively impact on environment.

A relevant number of contributions have been published on static management of time slots.
The Time Slot Management in Attended Home Delivery (TSMP), tackled by Agatz et al. [1], deals
with time slots offered in the zip codes of a service region (zones). An expected number of customers
is associated with each geographical zone. The TSMP allocates one time slot for each zip code.
Demand is measured in terms of customer orders over a time horizon of a week, therefore the
expected amount for each zip code is known. Split delivery is allowed and time slots cannot overlap
among different zones. To minimize the expected delivery costs, the authors use two different
approaches. The first one is a continuous approximation model used to estimate the delivery cost
of a given time slot schedule assigned to a set of zip codes. The second approach solves an integer
programming model with approximated delivery costs by grouping customers of the same zip code.
In both cases, vehicle routes to serve customers over the zones are not explicitly considered.

The TSMP has also been studied, by developing heuristics and meta-heuristics, in Hernandez
et al. [7], where the problem is formulated as a Periodic VRP (PVRP) and each zone has a service
frequency. More precisely, each customer is associated with a geographical zone and every zone is
represented with a square, whose side and center depend on the coordinates of customers’ location.
Demand is known and the goal is to select a particular schedule for each zone, assigning zones to
vehicles on any given day of the time horizon, trying to minimize the total travel cost. The classical
formulation of the PVRP considers several days where customers must be visited more times; in
[7], the number of visits is associated with zones and not with customers, as in our case: in the
SMTWAVRP, orders of the customers are supplied only once during the time horizon and thus are
not periodic. Customers are grouped into geographical zones, the problem is defined over a discrete
time horizon and a time slot must be associated with each zone, which can be visited more than once
according to the decisions taken by the planner. However, information is deterministic, the demand
and time service depend on the zone and do not change over the time horizon (demand uniformity)
for each zone. Finally, the authors do not address the construction of delivery routes based on
real customer orders but they are seen as sequences of zones. The authors solve the problem by
means of a Tabu Search, where neighborhood structures are defined using simple moves, such as
the removal of a zone from a route in a certain time period and the reinsertion in another route.
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They designed two heuristics to solve the problem directly or with a decomposition approach. To
compare performance results, they generated a new set of benchmark instances.

Two important contributions on TimeWindow Assignment Vehicle Routing Problem (TWAVRP)
are due to Spliet and Gabor [17] and to Spliet and Desaulniers [18]. In both these papers, the cus-
tomers are known and only their demand is stochastic, modeling all practical situations where
supplier knows his/her customers, and the day in which each of them has to be periodically served,
but demands may fluctuate. In [17], the authors establish that the time windows can start at any
time within a predefined exogenous time window decided by the customer. Since customers are
preassigned to each day, computing the expected total transportation cost is equivalent to minimize
the cost for each single day. The problem is formulated as a two-stage stochastic optimization: in
the first-stage, a time window is assigned to every customer from the set of possible time windows;
in the second-stage, after demand is known, vehicle routes are computed. The authors also propose
a mixed integer linear programming model and solve its relaxation (allowing non elementary routes)
with a Column Generation algorithm, finding lower bounds by solving one pricing problem for ev-
ery scenario. Finally, a branch-and-cut-and-price algorithm is introduced by separating some valid
inequalities. In the DTWAVRP [18], for each customer there is instead a discrete set of candidate
time windows, from which just one has to be selected, and the time horizon is composed of several
days.

We innovate with respect to these contributions by assuming that both customers (with their
demands) and their locations are unknown, as it typically happens in an e-commerce context. As
in [17] and [18], also in our case the time windows have a predefined width, and following [18] we
assume that a discrete set of candidate windows is available for each zone. However, differently than
in [18], time windows are not associated with customers but zones. Finally, given the multi-period
nature of the problem we cannot optimize the expected distance day by day as in the existing
literature.

3 Problem formulation

Let us consider a time horizon T = {1, . . . , τ} of τ periods (working days), within which customers
demand has to be satisfied. Customers, who are not known in advance, are spread over a geograph-
ical area partitioned into a set Z = {1, . . . , h} of h zones (e.g., zip codes or small areas). Each
zone z ∈ Z has a set of candidate time windows Wz. Each time window w is defined as a tuple
(lw, uw, tw, zw) where lw and uw are the starting and ending times, whereas tw ∈ T and zw are the
period (day) of the time horizon in which the time window is available and its zone, respectively.
Every zone z requires nz visits, corresponding to the selection of nz time windows to be scheduled
over the time horizon. We indicate as Wz(t) the subset of candidate windows of Wz offered by
zone z in period t. At most one time window can be selected per zone per period, i.e. every zone
is visited at most once per day. We call zone schedule the assignment for a given zone of the time
windows over the time horizon, and global schedule the set of all zone schedules. We say that a
global schedule is feasible if it has at most one time window per day per zone. The selection of zone
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schedules is guided by the cost of the corresponding delivery plan as set of routes accomplishing
the global schedule. Once the zone schedules are decided, delivery routes of minimum cost are
constructed for each day of the horizon by using estimates of the demand and service time in each
zone. The objective is to plan the global schedule while minimizing the expected transportation
cost and the penalty cost paid for unserved customers.
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Figure 1: Example of a schedule

Figure 1 shows an example of a global schedule characterized by 7 zones having time windows
that span from 8:00 a.m. to 5:00 p.m. over a time horizon of 5 days (from Tuesday to Saturday).
Zone 1 is visited every day inside time windows of 3 hours each and that are differently positioned
during each day; zone 2 is visited 4 times and has time windows of 3 hours each, zone 3 is visited
on Tuesday, Wednesday and Friday with time windows of 4 hours each, whereas zones 4, 5 and 6
are visited 2 times and have time windows of 4 hours. Finally, zone 7 can represent a foreign region
and is visited only on Saturday with a 8 hours time window.

The SMTWAVRP can be formally defined as follows. Let ξ be a vector of random variables
corresponding to customer locations, their demands and service times. Each realization of ξ is called
a state of the world or scenario. We assume that the support of ξ is finite and we indicate as S the set
of all possible scenarios, where each scenario s represents a realization of future demands intended as
customers with their locations, quantities to be delivered, service times and the zones they belong
to. Each scenario s has a probability ps to occur. Consider the complete graph Gs = (Vs, As)
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associated with scenario s. Vs = Ns ∪ {0, ns + 1} is the set of customers Ns = {1, . . . , ns} making
a request under scenario s, plus the starting depot 0 and the ending one ns + 1. A transportation
cost cij is incurred if a vehicle traverses the arc (i, j) ∈ As. Let also tij be the travel time to reach
customer j from customer i. Each customer i ∈ Ns asks for di units of demand to be delivered,
and its service time is si. A customer can only be served in one of the time windows associated
with his/her zone. A fixed number of identical vehicles are available. Each vehicle has a capacity
Q and must depart at time l0, and come back to the depot before time u0. Let K be the set of
vehicles. Since their use has to be planned in each day and assigned to subcontractors, we indicate
as K(t) ⊆ K the subset of vehicles available in period t ∈ T .

The SMTWAVRP can be formulated as a two-stage stochastic program. Let yzw be a first-
stage binary variable indicating if the time window w ∈ Wz is selected for zone z ∈ Z. We also
denote as E[C(y, ξ)] the expected cost value of the second-stage problem C(y, ξ), which is a nested
optimization problem aimed at deciding the routing to serve customers, depending on the time
windows assignment decisions y and on the realization of the random variable ξ. The formulation
of the SMTWAVRP is as follows:

min E[C(y, ξ)] (1)

s.t.
∑
w∈Wz

yzw = nz z ∈ Z (2)

∑
w∈Wz(t)

yzw ≤ 1 z ∈ Z, t ∈ T (3)

yzw ∈ {0, 1} z ∈ Z,w ∈Wz (4)

The objective is to minimize the expected cost of the recourse. Constraints (2) ensure that each
zone has its required number of time windows, and constraints (3) make sure that at most one time
window is selected for every zone in each period. The evaluation of the recourse E[C(y, ξ)] for a
given solution ŷ can be written as:

E[C(ŷ, ξ)] =
∑
s∈S

psC(ŷ, s) (5)

This requires the solution of the following variant of the VRPTW problem for each scenario
s ∈ S:
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C(ŷ, s) = min
∑
k∈K

∑
(i,j)∈As

cijx
k
ij + β

∑
i∈Ns

zi (6)

s.t.
∑

k∈K(tŵi )

zik + zi = 1 i ∈ Ns (7)

∑
j∈Vs

xkij = zik i ∈ Ns, k ∈ K(tŵi) (8)

∑
j∈Vs

xkij =
∑
j∈Vs

xkji i ∈ Ns, k ∈ K(tŵi) (9)

∑
i∈Vs

xk0i ≤ 1 k ∈ K (10)

∑
i∈Vs

∑
j∈Vs

djx
k
ij ≤ Q k ∈ K (11)

akj ≥ aki + (si + tij)x
k
ij −M(1− xkij) k ∈ K, (i, j) ∈ As (12)

aki ≤ uŵi +M(1− zik) i ∈ Ns, k ∈ K(tŵi) (13)

aki ≥ lŵi −M(1− zik) i ∈ Ns, k ∈ K(tŵi) (14)

zi, zik ∈ {0, 1} i ∈ Ns, k ∈ K (15)

xkij ∈ {0, 1} (i, j) ∈ As, k ∈ K (16)

aki ≥ 0 i ∈ Ns, k ∈ K (17)

In the model, ŵi is the time window that was chosen by customer i among the ones defined by
assignment ŷ, and K(tŵi) is the set of the available vehicles on delivery day tŵi . Binary variable zik
takes value 1 if customer i is visited by driver k, whereas binary variable zi is equal to 1 if customer
i is not visited, and a penalty β has to be paid. Let also xkij be a binary variable taking value one if
vehicle k traverses the arc (i, j) ∈ As. Finally, continuous variable aki indicates the arrival time of
vehicle k in node i. The objective (6) of the recourse problem is to minimize the costs of routing and
of unserved customers. Allowing customers to not be served enables us to have a complete recourse,
that is, having a feasible second-stage solution for any first-stage solution. The higher the value of β,
the higher the importance of serving customers with respect to the one of minimizing routing costs.
Constraints (7) impose that each customer i in scenario s is served by one of the vehicles working
in day tŵi or the penalty β has to be paid (zi = 1). Constraints (8) state that if node i is visited
by vehicle k the latter has to enter the node. Constraints (9) are the flow conservation equalities.
Constraints (10) ensure that at most one route is used by vehicle k. Constraints (11) impose that
capacity of each vehicle is not violated. Constraints (12)-(14) guarantee schedule feasibility with
respect to time windows. In particular, the inequalities (12) state that if a vehicle k is traveling
from i to j, it cannot arrive at j at a time akj lower than the time of arrival in node i (aki ) plus the
traveling time from i to j and the service time in i. Here, M is a large constant. Finally, constraints
(15)–(17) are binary and nonnegative conditions on variables. The problem is NP-hard.
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4 Methodology

The complexity of solving the SMTWAVRP is mainly related to formulation (1)–(15) and the
number of scenarios involved. The solution of this two-stage stochastic problem with binary variables
is impractical for small instances and nearly impossible for real-life applications. For example, an
instance with 25 delivery zones and 30 possible customers for each zone will lead to 2530 scenarios.

To tackle this difficulty, we decided to use the Sample Average Approximation Method (SAAM)
proposed byWerweij et al. [19]. This method solves stochastic optimization problems by using Monte
Carlo simulation. A sample of the scenarios is generated to approximate the recourse function. Let
Sp = {s1, . . . , sp} be a sample consisting of p scenarios. At each step of the resolution process,
for a given first-stage solution ŷ, the recourse problem is solved for each sample scenario by using
a deterministic solution procedure. Afterwards, the real recourse solution value is approximated
by calculating the average out of all the deterministic solution values obtained for scenarios in the
sample:

C(ŷ, Sp) =
1

p

p∑
i=1

C(ŷ, si). (18)

We also define the Sample Average Approximation Problem as follows:

C∗(Sp) = min
y∈Y
{f(y, Sp)} (19)

where Y is the set of first-stage solutions. It is well known that the approximation converges to
the true optimal value as the size of the sample Sp grows to infinity. Unfortunately, there is a
trade-off between solution quality and computational time to find it. One can expect that a high
number of scenarios will provide a solution of high quality at the cost of a very long resolution
time. On the contrary, a low number of scenarios gives a poor solution, but very quickly. This
trade-off is analyzed in Section 6.4. To our knowledge, very few papers have used SAAM strategy
in the context of multi-period delivery problems. Most of them are related to some Dynamic and
Stochastic Vehicle Routing Problems, where the time horizon is usually of a single day and every
intra day event requires to make new decisions.

In our case, the quality of the final solution is hard to evaluate because of the significant com-
plexity of the SMTWAVRP. Instead of relying on exact algorithms, we propose several ways to
heuristically solve the first-stage and then approximate the expected cost providing practical rules
of thumbs for the decision maker. A way to approximate the real expected cost is to take the final
solution y∗ of the first-stage problem, and calculate the expected value of the second-stage on a set
Sq of q scenarios. An approximation is thus obtained by calculating C(y∗, Sq). This idea is very
similar to the concept of value of the stochastic solution where one wants to evaluate the potential
benefit of using a stochastic programming approach (Birge and Louveaux [3]). By changing the pa-
rameter settings in the solution algorithms of the first stage, we obtain different first-stage solutions
that can be compared in terms of approximation and may provide to the decision maker a valuable
insight on the estimate of future transportation costs.
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Our overall methodology is the following. First, a set of scenarios is generated by using some
distribution functions differentiated according to the zones. An initial first-stage solution y is created
from this sample by using a construction heuristic. Then an improvement phase is applied possibly
terminating with a new solution ȳ. Each time a new first-stage solution is visited, we calculate the
cost of the second-stage by solving all scenarios of the sample with a heuristic. The best solution
found y∗ of this phase is finally returned with the computation of an estimate of the traveling costs.

5 Solution algorithms

In the following, we analyze the implemented two-stage algorithms in detail. First, we describe
how the initial solution is built. Then, we present various approaches (a basic local search and a
perturbation metaheuristic with its simple multi-start variant) for improving the first-stage initial
solution. Finally, the ALNS approach used for solving the second-stage is analyzed. We recall that
a solution of the first-stage corresponds to a feasible global schedule. A solution of the second-stage
provides the optimal routing over an assigned global schedule.

5.1 First-stage

This section describes the algorithms that are used to create and improve the first-stage solutions.
Our overall objective is to develop algorithms around a small and simple neighborhood to avoid
calculating the cost of second-stage too many times. A vast and complex neighborhood is likely to
be too expensive to compute. All our proposed algorithms use the neighborhood characterized by a
move that change the assignment of a time window from the current time moment to another one
over the time horizon. The quality of a move is assessed through the cost of second-stage. This
neighborhood is small enough, and it is not too cumbersome to explore.

Our solution framework first creates an initial global schedule. Then, this first-stage solu-
tion is improved by using a Perturbation heuristic (Perturbation), and its Multi-Start variant
(MsPerturbation). Both Perturbation and MsPerturbation make use of the same local
search as a building block. Such a local search (procedure LocalSearch) works by relocating
time windows over the time horizon. The pseudo-code of the procedure is presented in Algorithm
1. The method receives as input a global schedule H. At each step, an attempt is made for re-
placing a current time window w in H with another one in Wwz (i.e. one belonging to the zone
of the time window) that decreases the cost of the second-stage. For each move, we always en-
sure that the visited solution has no more than one time window per period per zone (feasible
global schedule). The algorithm is run until no further improvement can be found. Function
UpdateSchedule(H,w,w′) substitutes current time window w with w′ inside global schedule H,
whereas function OptimizeRoutes(H) solves the second-stage problem by computing the routes
visiting the customers according to the time windows assigned in the global schedule H.
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Algorithm 1 LocalSearch
Require: a global schedule H
1: find← true
2: H∗ ← H
3: while find do
4: find← false
5: for each time window w ∈ H do
6: w∗ ← w, f∗ ←∞
7: for each time period t ∈ T do
8: for each time window w′ ∈Wzw(t) do
9: H

′ ← UpdateSchedule(H,w,w′)
10: f(H ′)← OptimizeRoutes(H ′)
11: if H ′ is feasible and f(H ′) < f∗ then
12: f∗ ← f(H ′), w∗ ← w′

13: find← true
14: end if
15: end for
16: end for
17: H∗ ← UpdateSchedule(H,w,w∗)
18: f(H∗)← OptimizeRoutes(H∗)
19: end for
20: H ← H∗

21: end while
22: Return H∗
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5.1.1 Initial solution

The constructive method used to obtain a first-stage initial solution is presented in Algorithm 2.
A global feasible scheduleH is created by assigning to each zone z ∈ Z, exactly nz time windows,

each of which occurs in a random period not already assigned to another time window of the same
zone z (Lines 2-8, Algorithm 2). Each time window is represented by a tuple (l, u, t, z) where initial
and ending times l and u are initialized to l0 and u0, whereas t is the period to which the window
belongs, and z indicates its zone. To make sure none of the assigned nz time windows is on the same
period, an array D with numbers from 1 to τ is created and then shuffled (function SHUFFLE in
Line 3, Algorithm 2). The period of the first nz time windows will be equal to the first nz entries
in array D. The corresponding time windows are added to the global schedule H (function ADD)
up to the point in which exactly nz time windows have been assigned to each zone.

At this point, the procedure tries to improve the period-zone assignment of the current schedule
H (Lines 9-20, Algorithm 2) in such a way that time windows of nearby zones are in the same
period. First, a loop iterates through all the time windows. For each time window w, the values f∗

and t∗ are equal to the cost and period of the best move. At each iteration, each time window w is
moved to a temporary period t′, and values f∗ and t∗ are updated if there is no other time window
of the same zone in period t′ and if the cost of the second-stage f ′ is lower than f∗. Time window
w is then moved to the best period found t∗ (Line 19, Algorithm 2).

Finally, in Lines 9–33, each time window is evaluated on all possible periods and starting times,
in order to obtain the largest decrease in costs of the second-stage. At the beginning, a copy of
the current solution is stored in H∗ and the method tries to substitute each time window w in
the current first-stage solution with a feasible time window w′ ∈ Wz, i.e. reducing its duration
(in Line 25, the algorithm updates the schedule by substituting an all-day time window w with a
restricted one w′, thus narrowing it to a proper duration), and updating the values of f∗ and w∗

when improving the cost over w∗. At the end, w is replaced by the best w∗ found and the final
global schedule H∗ is returned as a solution.
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Algorithm 2 InitialSolution
1: H ← ∅; D ← [1, ..., τ ]
2: for each zone z ∈ Z do
3: D ← SHUFFLE(D)
4: for i = 1 to nz do
5: w ← (l0, u0, D[i], z)
6: H ← ADD(H,w)
7: end for
8: end for
9: for each time window w = (l, u, t, z) ∈ H do

10: f∗ ←∞, t∗ ← t
11: for each period t′ ∈ T do
12: w′ ← (l, u, t′, z)
13: H ′ ← UpdateSchedule(H,w,w′)
14: f(H ′)← OptimizeRoutes(H ′)
15: if H ′ is feasible and f(H ′) < f∗ then
16: f∗ ← f(H ′), t∗ ← t′

17: end if
18: end for
19: w ← (l, u, t∗, z)
20: end for
21: H∗ ← H
22: for each time window w = (l, u, t, z) ∈ H do
23: w∗ ← w, f∗ ←∞
24: for each time window w′ ∈Wz do
25: H ′ ← UpdateSchedule(H,w,w′)
26: f(H ′)← OptimizeRoutes(H ′)
27: if H ′ is feasible and f(H ′) < f∗ then
28: f∗ ← f(H ′), w∗ ← w′

29: end if
30: end for
31: H∗ ← UpdateSchedule(H∗, w, w∗)
32: f(H∗)← OptimizeRoutes(H∗)
33: end for
34: Return H∗

5.2 Metaheuristics

This section describes the algorithm Perturbation, and its variant MsPerturbation. They
both escape local optima by using a perturbation that consists in moving a number of time win-
dows randomly selected to the cheapest periods different from the current ones. The intensity of
perturbation is controlled by a parameter α1 that establishes the number of time windows to move.
Procedure LocalSearch is then run on each perturbed solution.

Metaheuristic Perturbation (pseudo-code shown in Algorithm 3) runs over a maximum num-
ber of itMax iterations. At the beginning of each iteration, the best first-stage solution H∗ found so
far is copied into the current solution H (Line 3, Algorithm 3). Perturbation intensity is initialized
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to a low value (α1 = 1), and then adjusted dynamically. More precisely, the solution is perturbed by
means of two inner loops (Lines 4-18, Algorithm 3) by using the two parameters α1 and α2. While
α1 works similarly to the radius of a Variable Neighborhood Search deciding the number of time
windows to move and increasing when no better solution can be found, on the contrary parameter
α2 controls the number of times the current solution must be perturbed. In Line 6, the function
MoveTWs randomly moves α1 time windows to their cheapest periods. It is possible that MoveTWs
finds an improving solution. Afterwards, the local search is applied to find a local minimum (Line
12, Algorithm 3). If the new solution found by the local search has improved over the best solution,
the strength level is set back to its initial value and the perturbation continues. If not, the intensity
is increased. When α1 reaches its maximum level γ1, then the search is restarted and the best
solution is copied again into the current solution.

The incumbent solution is updated every time a new best solution is found (Lines 9 and 15,
Algorithm 3), the best global schedule found H∗ is finally returned in Line 20, Algorithm 3.

Algorithm 3 Perturbation
Require: a global schedule H
1: H∗ ← LocalSearch(H)
2: for iter = 1 to itMax do
3: H ← H∗

4: for α1 = 1 to γ1 do
5: for α2 = 1 to γ2 do
6: H ←MoveTWs(H,α1)
7: f(H)← OptimizeRoutes(H)
8: if f(H) < f(H∗) then
9: H∗ ← H

10: end if
11: end for
12: H ← LocalSearch(H)
13: f(H)← OptimizeRoutes(H)
14: if f(H) < f(H∗) then
15: H∗ ← H
16: α1 ← 1
17: end if
18: end for
19: end for
20: Return H∗

We also developed a simple multi-start variant, whose pseudo-code is presented in Algorithm
4. One possible drawback of Perturbation algorithm is that it always restarts from the best
solution. Over the long run, it might get stuck on the same solution. To overcome this potential
problem, the simple idea of algorithm MsPerturbation is to restart the search at each iteration
of the outer loop from a newly created solution as can be seen in Line 3 of Algorithm 4. Different
solutions are generated at each call of InitialSolution() thanks to the SHUFFLE() routine.
Also, to allow more restarts, the value of α1 is not reset to 1 every time a new improving solution

14

Tactical Time Window Management in Attended Home Delivery

CIRRELT-2019-09



is found. Instead, the perturbation continues until α1 reaches the value γ3.

Algorithm 4 MsPerturbation
Require: a global schedule H
1: H∗ ← LocalSearch(H)
2: for iter = 1 to itMax2 do
3: H ← InitialSolution()
4: H ← LocalSearch(H)
5: f(H)← OptimizeRoutes(H)
6: if f(H) < f(H∗) then
7: H∗ = H
8: end if
9: for α1 = 1 to γ3 do

10: for α2 = 1 to γ4 do
11: H ←MoveTWs(H,α1)
12: end for
13: H ← LocalSearch(H)
14: f(H)← OptimizeRoutes(H)
15: if f(H) < f(H∗) then
16: H∗ ← H
17: end if
18: end for
19: end for
20: Return H∗

The best values for itMax and itMax2, γ1, γ2 and γ3, γ4 for both algorithms are investigated
in Section 6.

5.3 Second-stage

The first-stage provides a global schedule H corresponding to the assignment of at most one time
window to each day and zone. In the second-stage, such a schedule is used to determine the routes
visiting the customers of the different zones (procedure OptimizeRoutes).

Since a zone might be visited more than once over the time horizon and possibly in different
time windows, we need to establish when a customer of a given zone has to be served (the day and
the corresponding time window). In common practice, each customer selects a time window from
his/her list of preferences. We thus assume that all customers have an ordered list of days in which
they prefer to be served. Moreover, each customer will receive the service in the time window of
the current schedule H having the highest order in his/her personal list. This allows the company
to guarantee, on average, a good level of customer satisfaction.

To compute the cost associated with a given global schedule H, in the second-stage we look
for the routing of a fleet of vehicles with the objective of first maximizing the number of served
customers, and then minimizing the distances. To this aim, we solve a VRPTW for each scenario
of the sample and for each period t ∈ T . The set R indicates the set of routes serving customers of
period t in scenario s and C(R) its cost. The value f is updated with the cost of routing for each
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Algorithm 5 OptimizeRoutes
Require: a global schedule H and a set of scenarios S
1: f ← 0
2: for s = 1 to |S| do
3: Assign customers to days/time windows
4: for t = 1 to |T | do
5: R← ConstructRoutes(H,Ns, t,K(t))
6: R← ALNS(R)
7: R← Improvement(R)
8: f ← f + C(R)
9: end for

10: end for
11: Return f/|S|

scenario and period. At the end, the average routing cost f/|S| is returned. To solve the VRPTW,
we run some classical local search procedures, and an Adaptive Large Neighborhood Search (ALNS)
framework. Our ALNS implementation follows the general scheme proposed by Pisinger and Ropke
[12].

The second-stage algorithm (OptimizeRoutes) receives a global schedule as an input, and
after assigning the customers to the time windows construct an initial solution for each period
t ∈ T. Algorithm ConstructRoutes is a construction heuristic where customers are inserted
sequentially in an available route by the Regret-k insertion heuristic of [13]. At each iteration,
the heuristic calculates the minimal insertion cost into each route and it selects the customer that
maximizes the sum of differences between the cost of inserting in its best route minus the best
insertion costs in the other routes. This value is a kind of look ahead that indicates the lost that
can be incurred if the customer is not inserted now. If some customers could not be feasibly inserted
into a route, they are left in a customer bank to be inserted later. Then the ALNS procedure is
called. At each iteration of ALNS, a removal and an insertion heuristic are selected among the ones
available in the framework. The purpose of the removal heuristic is to remove some customers from
the solution and put them into the customer bank. Once some customers are removed, the insertion
heuristic selects customers in the customer bank to insert them back in the solution hoping to
improve it. We decided to select and implement a subset of the destroy/repair operators described
in Pisinger and Ropke [12]. In particular, after extensive preliminary tests, we selected the Random
removal, the Shaw removal, and the Regret-k insertion because they offer the best trade-off in terms
of time and quality. All selected destroy and repair operators, the roulette-wheel mechanism used
to select the operators according to a probability that depends on their past performance, and all
the parameters are implemented as in [12]. We introduced only two minor changes corresponding
to the cooling rate, that is set to 0.8, and the number of iterations that has been decided after some
tests as described in Section 6.

After the removal/insertion process, two local search operators are finally applied to the in-
cumbent solution. We call this phase of the OptimizeRoutes algorithm, the Improvement
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procedure. The 2-Opt∗ local search, described in Potvin and Rousseau [14], is first applied. It
consists in selecting two arcs from two different routes. The removal of both arcs create four parts:
two beginnings and two endings. Then, the beginning of one route is merged with the ending of
the other one. This method is shown to be particularly powerful for problems with time windows.
Finally, the Relocate local search proposed by Savelsbergh [16] is executed. It tries to insert a
customer from one route into another. Both methods are run until no further improvement can be
found.

5.4 Speed-up Techniques

Two techniques were implemented to improve the speed of our algorithms. The first one is the
hot-starting of ALNS. In many cases, global schedules given as input to the second-stage problem
do not change drastically. Typically, they differ for only one time window, and often just for its
starting time. Instead of constructing a solution from scratch, a current second-stage solution is
kept in memory for each scenario. The time window of each customer is updated each time the
second-stage problem is about to be solved. Then, the feasibility of every route is checked before
executing ALNS. Customers causing infeasibility are removed and put into the customer bank. Once
all routes are made feasible, customers in the customer bank are reinserted into the solution using
the regret heuristic and then ALNS is started. In this way, better solutions could be found.

The second technique relies on a hash table used to store the cost of the second-stage correspond-
ing to every first-stage solution that is visited. Each global schedule is hashed to a 64 bits integer
in the following way. First, all time windows are sorted by zone and period. Each time window
is transformed into a 32 bits integer, where the first 10 bits correspond to the period, the next 11
to the starting time and the last 11 to the ending time. Both times are represented in number of
minutes since midnight. Then, the integer identifier of each time window is added to a list. The
list of integers is hashed into a 64 bits integer key using the one at a time function of Jenkins [8].
The key and the cost of the solution are added in a traditional hash table. A speed-up of 5 could
be achieved by using this technique.

6 Experimental Analysis

This section is devoted to the description of the testing environment including the instance gen-
eration, the choice of parameters for the implemented algorithms, and the tests performed. Each
algorithm has been implemented in C++, and run on an Intel 2.667 GHz Westmere EP X5650
processor under Scientific Linux 6.3.

6.1 Generation of Instances

Since no benchmark instances exist for the problem, we created two sets of new instances. The first
set contains homogeneous instances to test the different parameters and assess the performance of

17

Tactical Time Window Management in Attended Home Delivery

CIRRELT-2019-09



# # # Average # Average # Drivers Work Time
Group Zones TWs Days Customers Service Time per Day per Zone

1 8 1 3 48 12 1 120.6
2 12 1 3 64 20 2 163.6
3 12 1 4 96 12 2 156.4
4 16 1 4 96 20 2 178.5
5 16 1 5 144 12 3 179.9
6 24 1 5 192 14 3 175.5
7 16 2 4 132 20 3 238.7
8 24 2 4 192 24 4 266.6
9 16 3 5 192 24 4 393.5
10 24 3 5 240 30 5 401.4

Table 1: Structure of Class A instances

our algorithms (Class A instances). The second set of instances is built upon real data of a delivery
company (Class B instances).

6.2 Experiments on generated instances

Class A instances consist of delivery regions shaped in the form of a grid with rows and columns.
Each square of the grid corresponds to a zone of extension 500×500.

We assume to know the probability distributions for locations, demands and service times of
customers in a given zone: the total number of customers follows a Poisson distribution, the locations
of customers inside each zone are uniformly distributed, the demands and service times follow a
normal distribution. To ease our experiments, we made sure that the vehicle capacity constraint is
not restrictive (the capacity of all vehicles is set to 800). With a single tight constraint, corresponding
to the time windows, it is much easier to generate instances with the right number of customers.
Each demand has a normal distribution with mean equal to 20, and standard deviation equal to
5. The operating hours of the depot are all set between 8AM and 6PM. All offered time windows
have a width of 180 minutes. Also, to favor the number of served customers over distance, we set
the parameter β, the cost associated with non-served customers, in our model to 1000000.

Table 1 describes our set of different configurations. Each configuration is characterized by a
number of zones, a number of time windows per zone, a number of days in the time horizon, an
average number of customers, an average service time, a number of available drivers for each day,
and an estimation of the required work time spent in each zone. Each configuration consists of 5
instances, and for each one the depot is located randomly inside the grid.

The required number of time windows per zone was estimated by using an approximation of the
work time for each zone. This value includes the total travel time and the total service time. The
total travel time was computed by using an approximation of the optimal routing cost proposed by
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Figliozzi [6], as follows:

L∗ =
1

speed
×
(
1.45× nα −m

nα
×
√
Bnα + 2rm

)
(20)

where L∗ is the total travel time, nα is the number of customers, B is the total area of the
delivery region, m is the number of drivers, r is the average distance customer/depot, and speed
is the traveling speed of the vehicles. The average distance to the depot r is equal to half the
diagonal of a square of area B. The speed is set to 100

60 × 50km per hour to represent the required
time as a function of the travel distance. The formula does a regression over these parameters to
approximate the total travel time of the fleet. The total work time in each zone was approximated
in the following way:

L∗z =
L∗

|Z|
+ sz

nα
|Z|

(21)

where L∗z is an approximation of the work time in zone z. It is composed of the total travel time
L∗ divided by the number of zones plus the expected service time sz of zone z times the number
of customers in the zone (nα|Z|). Because these instances are homogeneous, all the L∗z values are the
same. Then, the number of time windows (all with width equal to 3 hours) in zone z is calculated
as follows:

# of time windows in zone z =
⌈
L∗z
3h

⌉
(22)

The number of customers was adjusted to ensure the time windows are sufficient in the majority
of the cases. If time windows are planned using the expected number of customers, then they might
be insufficient because the number of customers follows a Poisson law and it is highly probable that
50% of the scenarios will contain more than the expectation. Instead of using the expected value,
the value nα was increased to have a sufficient plan for α percent of the cases. The value nα is such
that P (X ≤ nα) = α, where X is a random variable following a Poisson distribution with expected
mean equal to n. A value of α = 0.95 increases L∗ and L∗z, and it ensures that there is a relatively
low number of unserved customers in the solution.

Each instance has a set of scenarios and each one is generated in the following way. First, the
total number of customers n′ is generated randomly following a Poisson distribution. Secondly, a
zone is randomly selected for each of the n′ customers. Each zone is selected with equal proba-
bility. Thirdly, the customer is then randomly located inside the zone and its demand and service
time are randomly generated according to a normal distribution. Finally, The preferences of each
customer on the delivery date are given by a random permutation of the array T = [1, 2, ..., h].
We also assume that each scenario is equally likely to occur. Finally, the expected scenario is also
generated. It is characterized by having a number of customers equals to the expected number of
customers. Customers are uniformly scattered inside their zone. Their service time and demand
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Perturbation MsPerturbation
γ2 γ4

γ1 1 2 3 4 γ3 1 2 3 4
1 1.64% 1.32% 1.03% 1.02% 1 1.92% 1.79% 1.99% 1.89%
2 1.29% 0.86% 1.22% 1.37% 2 1.63% 1.57% 1.68% 1.60%
4 1.18% 1.48% 1.31% 1.57% 4 1.16% 1.32% 1.61% 1.26%
6 1.22% 1.40% 1.56% 1.93% 6 1.16% 1.59% 1.66% 1.47%
8 1.11% 1.61% 1.71% 1.90% 8 1.09% 1.45% 1.64% 1.53%

Table 2: Parameters tuning: Values of γ1, γ2 and γ3, γ4.

are exactly equal to the expected values. This scenario is useful for comparing what would produce
a deterministic approach, like in [7], versus a stochastic approach as done in this work.

6.3 Parameters tuning

We tested several different parameters in order to assess the performance of our algorithms for solving
the SMTWAVRP. We solved all the instances changing one parameter at a time, and computing
the average gap of that particular configuration with respect to the best result obtained for each
instance. All tests have been made by using the expected scenario described in the previous section.

The first test concerns the possible values of γ1 and γ2 in metaheuristic Perturbation and of
γ3 and γ4 in the corresponding MsPerturbation variant. In this preliminary test, we run both
algorithms for 20 minutes on scenarios 1 and 2, 40 minutes on scenarios 3 and 4, and 1 hour for the
other scenarios. Table 2 presents the results of different values of γ1 and γ2. Each column contains
the percentage deviation to the best solution found for both algorithms separately. Results indicate
that doing a too high or too low number of perturbations can generally lower the quality of the
solutions. We have chosen the two best configurations corresponding to the values γ1 = γ2 = 2

for Perturbation method, and γ3 = 8 and γ4 = 1 for MsPerturbation, and used them in the
remaining computational experiments.

As far as ALNS is concerned, we have initialized all the parameters, but one, to the same values
reported in Ropke and Pisinger [15]. The number of iterations of ALNS has a major impact on the
quality of the solution and on the running time. This analysis is reported in Table 3. First, we
tested a setup where only ConstructRoutes is used to build an initial solution. Secondly, we also
tested the pure application of the Relocate and 2-Opt∗ local searches (procedure Improvement).
Finally, we run ALNS for 25, 50, 100, 200 and 400 iterations with and without the local searches.
The test was done using the Perturbation heuristic for 100 iterations.

Table 3 presents the results. The first column contains the type of tested configuration, the
second represents the cost percentage deviation from the best solution among all methods, whereas
column time indicates the average runtime. Based on these results, we observe that using ALNS
improves the solution quality but increases the runtime. Both local searches are useful at improving
the initial solution, but ALNS remains essential to obtain good results. Better results can be
obtained by combining ALNS with the local searches. We believe that running ALNS for 100
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Configuration Cost Time
ConstructRoutes 35.68% 6.8
Relocate 18.52% 25.9
2-Opt* 23.25% 15.7
Improvement 14.71% 33.5
ALNS 25 3.90% 273.0
ALNS 50 3.17% 593.1
ALNS 100 1.87% 1235.9
ALNS 200 1.97% 2660.5
ALNS 400 1.78% 5332.9
ALNS 25 + Improvement 2.58% 322.6
ALNS 50 + Improvement 1.87% 653.6
ALNS 100 + Improvement 1.34% 1337.7
ALNS 200 + Improvement 1.31% 2701.7
ALNS 400 + Improvement 1.23% 5435.0

Table 3: Testing different algorithm configurations.

Algorithm Cost Time # Best
ConstructRoutes 15.55% 6.9 2
Improvement 10.75% 24.0 2
Perturbation 0.09% 3242.4 46
MsPerturbation 1.44% 3243.3 16

Table 4: Comparison of the algorithms

iterations, and using both local search routines represents a very good trade off between quality and
runtime. Using 200 iterations doubles the runtime compared to 100, but the quality improvement
is too scant.

The third test reports the solution quality of our proposed algorithms. We have compared the
behavior of the two metaheuristics when running for the same amount of time. Their results are also
compared to the solutions found by the constructive heuristic (ConstructRoutes) and by the
local search phase (Improvement algorithm). Table 4 presents the results: the first column shows
the algorithm; the second column indicates the percentage deviation with the best found solution;
third column contains the average running time; the last column indicates the number of times the
algorithm found the best solution. The results indicate that the Perturbation heuristic performs
much better than its MsPerturbation variant. Over our test bench, Perturbation heuristic is
able to find the best solution in 46 out of 50 instances. Solutions found by the MsPerturbation

algorithm are, on average, 1.35% worse. However, both algorithms are able to significantly improve
the solutions produced by ConstructRoutes and Improvement.

The purpose of the fourth test is to compare the evolution of the objective function value
when increasing the number of iterations itMax in the Perturbation heuristic. We have run
the algorithm for 0, 1, 10, 20, 50, 100, 200 and 400 iterations without setting any time limit. The
test with no iterations means that the algorithm consists only of the constructive method and of

21

Tactical Time Window Management in Attended Home Delivery

CIRRELT-2019-09



itMax Cost Time
0 9.65% 29.2
1 8.65% 40.8
10 5.12% 165.4
20 4.14% 301.1
50 2.38% 706.2
100 1.09% 1344.3
200 0.60% 2582.4
400 0.00% 5046.7

Table 5: Perturbation performance: runtime versus number of iterations.

the local search heuristic. Table 5 reports the results where the first column (itMax) provides
the number of iterations, the second column shows the percentage deviation to the best solution
value, and the last column indicates the average runtime (in seconds). It is worth noticing that
doing very few iterations provides a small contribution to improve the solution value. However,
when the number increases over 100 iterations, the results become much better. The runtime of our
algorithms strongly depend on the number of used scenarios. This means that the overall runtime
is equal to the time reported in the third column multiplied by the number of scenarios. To have a
reasonable overall computational time, we have decided to run the Perturbation method for 100
iterations.

6.4 The Value of the Stochastic Solution

In this section, we analyze the potential benefit of using a stochastic programming approach instead
of a deterministic one. As pointed out earlier, the high number of scenarios will likely increase the
computational times, but it might also provide better first-stage solutions. On the opposite side, a
low number of scenarios will reduce the computational times and probably result in poorer first-stage
solutions.

As a first step towards this analysis, we evaluate the information provided by a larger number
of scenarios. To this aim, we set proportionally the same amount of time to find the best first-stage
solution when considering scenario sets of different sizes. The Perturbation heuristic has been
run on 6, 15, 25, 50, 100, 200 scenarios and also on the expected scenario. The runtime for the
case with 200 scenarios has been set to 36 hours. Proportionally, we reduced the time for 100
scenarios to 36/(200/100) = 18 hours, for 50 scenarios to 9 hours and so on. This ensures that the
Perturbation heuristic does about the same number of iterations.

Once the computation of the first-stage solutions have been completed, their expected costs
are calculated on a set of 400 scenarios. Table 6 presents the results obtained for each set of
scenarios. Each size is compared with the expected scenario (last line). Column 2 indicates the
average number of unserved customers, whereas column 3 shows the average traveling cost deviation
from the expected scenario. Column 4 reports the average runtime. Results indicate that, for
approximately the same number of iterations, the more scenarios we have the better the first-stage
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# Avg. # unserved Avg. Avg.
Scenarios Customers Distances Runtime
6 0.289 -2.82% 1.1 hours
15 0.099 -2.83% 2.7 hours
25 0.055 -2.64% 4.5 hours
50 0.030 -2.41% 9.0 hours
100 0.015 -2.00% 18 hours
200 0.009 -1.64% 36 hours
Expected 0.791 0.00% 0.18 hours

Table 6: Value of the Stochastic Solution

# Avg. # unserved Avg.
Scenarios Customers Distances
6 0.416 -2.66%
15 0.097 -1.66%
25 0.058 -1.07%
50 0.027 -0.40%
100 0.016 0.65%
200 0.009 2.27%
Expected 0.848 0.00%

Table 7: Value of the Scenarios: runtime equal to 6 hours.

solution will be. As expected, the number of unserved customers decreases substantially with the
number of scenarios. Even with very few scenarios, like 6 or 15, we can improve over the deterministic
approach represented by the expected scenario. The average distance behaves differently because a
decrease in the number of unserved customers increases the vehicle distances.

As a second test, we assess the trade-off between solution quality and time. With a fixed
reasonable amount of time, the algorithm searches for the best first-stage solution on sets of 6, 15,
25, 50, 100, 200 scenarios and also the expected scenario. Then, the expected cost of the first-stage
solutions are approximated on a set of 400 scenarios. The total runtime is set to 6 hours. The entries
in Table 7 have the same meaning of the corresponding columns in Table 6. Findings indicate that
the best results, in terms of unserved customers and distances, can be achieved by using larger sets
of scenarios if the runtime is a fixed amount.

Some additional considerations can be made by comparing the findings in Tables 6 and 7.
Results obtained by using very few scenarios should be taken with a grain of salt. For example, let
us consider the results of using the expected scenario and 6 and 25 scenarios. The results in the two
tables are not consistent. The algorithm was ran for a much longer time in the second test (Table
7) than in the first one (6), and the obtained solution are worse. For these scenarios, the first-stage
solutions found was very good but their expected values on the 400 scenarios were rather random.
The tables show that having more than 100 scenarios give more consistent results.
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6.5 Quality of Service

The last test compares the quality of the service in terms of number of time windows and trans-
portation costs. Previously, all our tests used time windows of 3 hours. However, a company might
be interested in providing a better customer service with time windows of smaller width. We as-
sume the quality of the service is inversely proportional to the width of the proposed time windows.
Larger time windows imply higher waiting times and are usually less preferred by customers who
do not like stay at home for long hours. Inversely, with short time windows, for example of 1 hour,
customers might be more satisfied. However, this level of satisfaction comes at a cost for the trans-
portation company. Each new offered time window is a possible additional trip to zone which might
increase transportation costs (for an environmental impact of the choice of different time windows
width see Manerba et al. [11]).

For this test, we divided the estimated work time of a zone by the time window width as given
in equation (23).

# Time Windows per Zone =
⌈
Work Time per Zone

TW Width

⌉
(23)

Free Time = (# Time Windows per Zone× TW Width)−Work Time per Zone (24)

A special care must be given when selecting time window width, since reducing their size might
imply a reduction of the overall work time in a zone. Table 9 shows this phenomenon. Each cell
indicates the expected free time in minutes that is available in each zone. Such a free time is
calculated as in equation (24). Consider, for instance, configuration 3 with a work time of 156.4
minutes. The free time with 3h time windows is equal to 23.6 minutes, whereas it grows to 83.6
minutes for 2h time windows. This means we might be able to serve more customers with time
windows of width equal to 2h than with those of width equal to 3h. A second problem might also
happen when offering two time windows of width v versus a single time window of size 2v. It is
possible that we serve more customers with two time windows than with the single one. This is
mainly due to the fact that the fleet of vehicles is fixed on each day. As a matter of fact, the two
time windows must be on different days, so we have twice the number of drivers available. This
might happens with configurations 9 and 10 for an all-day time window versus 2 time windows of
5h. For these reasons, the fine tuning of time windows should be done carefully to achieve the best
results in terms of transportation costs and number of served customers.

Table 8 indicates the number of time windows in each scenario for each time window width. We
tested scenarios with a time window spanning an entire day (10h) up to a single hour. It is worth
noticing that in scenarios 9 and 10, there are 5 time windows instead of 7 because of the 5 days
time horizon. This might increase the number of unserved customers.

This test was done over 200 scenarios for a maximum runtime of 12 hours. Results are presented
in Tables 10 and 11. In Table 10, the first column provides the width of the time windows. 10 hours
corresponds to the whole day. Columns (Customers) and (Distances) provide the average number of
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# Work # TWs per Width
Configuration Days Time 10h 5h 4h 3h 2h 1.5h 1h

1 3 120.6 1 1 1 1 2 2 3
2 3 163.6 1 1 1 1 2 2 3
3 4 156.4 1 1 1 1 2 2 3
4 4 178.5 1 1 1 1 2 2 3
5 5 179.9 1 1 1 1 2 2 3
6 5 175.5 1 1 1 1 2 2 3
7 4 238.7 1 1 1 2 2 3 4
8 4 266.6 1 1 2 2 3 3 5
9 5 393.5 1 2 2 3 4 5 7
10 5 401.4 1 2 2 3 4 5 7

Table 8: Number of Time Windows

Configuration Worktime 10h 5h 4h 3h 2h 1.5h 1h
1 120.6 479.4 179.4 119.4 59.4 119.4 59.4 59.4
2 163.6 436.4 136.4 76.4 16.4 76.4 16.4 16.4
3 156.4 443.6 143.6 83.6 23.6 83.6 23.6 23.6
4 178.5 421.5 121.5 61.5 1.5 61.5 1.5 1.5
5 179.9 420.1 120.1 60.1 0.1 60.1 0.1 0.1
6 175.5 424.5 124.5 64.5 4.5 64.5 4.5 4.5
7 238.7 361.3 61.3 1.3 121.3 1.3 31.3 1.3
8 266.6 333.4 33.4 213.4 93.4 93.4 3.4 33.4
9 393.5 206.5 206.5 86.5 146.5 86.5 56.5 26.5
10 401.4 198.6 198.6 78.6 138.6 78.6 48.6 18.6

Table 9: Free time
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Scenario Costs Expected Costs
TW Width Customers Distances Customers Distances
10 hours 0.000 0.0% 0.010 0.0%
5 hours 0.000 8.9% 0.004 9.6%
4 hours 0.000 13.5% 0.008 13.7%
3 hours 0.001 23.8% 0.011 23.7%
2 hours 0.000 53.5% 0.014 52.9%
1.5 hours 0.014 68.5% 0.044 67.6%
1 hours 0.179 118.6% 0.398 117.0%

Table 10: Cost of Time Windows

Configuration 10h 5h 4h 3h 2h 1.5h 1h
1 0.009 0.022 0.023 0.037 0.059 0.254 0.605
2 0.005 0.004 0.012 0.014 0.008 0.008 0.482
3 0.013 0.003 0.011 0.012 0.002 0.001 0.023
4 0.006 0.004 0.015 0.013 0.016 0.041 1.238
5 0.011 0.000 0.002 0.000 0.000 0.001 0.007
6 0.003 0.006 0.011 0.000 0.008 0.013 0.042
7 0.001 0.000 0.001 0.001 0.003 0.013 0.149
8 0.014 0.002 0.001 0.008 0.013 0.066 0.679
9 0.020 0.000 0.000 0.001 0.001 0.009 0.058
10 0.021 0.003 0.005 0.025 0.033 0.035 0.702

Table 11: Expected number of unserved customers

unserved customers and average percentage deviation in terms of traveled distance when considering
200 scenarios (Scenarios Costs) and when calculating the expected costs on 400 scenarios by using
the first-stage solutions (Expected Costs). In Table 11, we have the overall expected number of
unserved customers for each configuration and for each time window size.

As shown in table 10, distances and number of unserved customers increase as the time window
width decreases. One can expect to double its distances when passing from an entire day time
window to 1 hour time windows. The used vehicle capacity will be reduced as well as the number of
unserved customers increases. Results also indicate that computing a first-stage solution by using
200 scenarios gives costs that are in line with 400 scenarios.

The problems identified earlier are evident in our results. The increase in free time due to a time
window reduction can be seen in configurations 2 and 3 with time windows of 3h and 2h, and also in
configuration 8 with time windows of 5h and 4h. The second problem occurs also in configurations
9 and 10 with an entire day time window. For these two cases, the algorithm could find schedules
that are very tightly packed. There are even days without any assignment of time windows. This
result can be explained by the fact that in all cases we use the same number of drivers. The fewer
the number of vehicles used when optimizing, the more time windows will be evenly spread across
the time horizon.
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Edmonton Calgary
Postal codes 49 44
Average # customers 463 469
# vehicles 5 6

Table 12: Details on the real-world instances

6.6 Experiments on Real-World Instances

In this section, we consider real-world instances (Class B) obtained by a Canadian company owning
stores selling furniture such as beds, sofas, tables, and white appliances. The company operates two
warehouses located in the cities of Calgary and Edmonton, both in the province of Alberta. Both
warehouses deliver products to customers located in their nearby neighborhood.

The company handed us its historical database of previous deliveries totalizing 80000 deliveries
in a time horizon of several months. Their current delivery policy is the following. Customers can
choose any delivery date after a minimal date that depends on the availability of the required stocks
at the depot. In the normal case, as soon as the stock becomes available, the company can deliver
it in the next four days (it might be few days more if the stock is not available). Then, three days
prior to a delivery date, the transportation department receives the list of all deliveries. A variant
of the vehicle routing problem is solved and then, according to the obtained routes, it is possible to
calculate an estimated time of arrival at each customer. Finally, a 3 hour time window around the
arrival time is given by an automated calling machine.

The company wants to compare its current delivery policy with a time window assignment based
approach on a typical week. Table 12 presents the details of the two delivery regions. The warehouse
of Edmonton offers deliveries in 49 postal codes with an average of 463 customers per week and
uses a fleet of 5 vehicles. For Calgary, the company delivers in 44 postal codes with an average of
469 customers served per week and has a fleet of 6 vehicles per day. An analysis of the data shows
that distribution of the number of customers per week follows a Poisson law. The same method
was used to generate the scenarios. However, instead of randomly generating customers, they are
randomly picked in the bank of 80000 deliveries. A set of 200 scenarios was created to be used in the
optimization and a set of 400 was created to calculate the expected number of unserved customers
and distances. Postal codes are highly heterogeneous: some zones require more than 12 hours of
work per week, some others require less than 2 hours. All vehicles are available from 8 AM to 6
PM. All distances have been calculated using the haversine distance.

The study aims at comparing the company’s approach of letting customers choose their delivery
date against different sizes and number of time windows. Given the size of time windows, we obtain
the number of time windows by applying formula (23). The comparison is made by using widths of
3, 4, 6 hours and entire day. By using these values, we noticed that several postal codes, requiring
few working hours, obtain only one time window. To give more choices to the customers, we tested
the case with 1, 2, 3 and 4 more time windows. The final number of time windows per postal code
is the minimum between the number obtained from formula (23) and 5, which is the length of the
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time horizon. A No Time Windows test was made to know the minimum possible cost. All tests
were run for 36 hours.

Results are presented in Table 13. The first column is the time window configuration. For each
city, the table shows the total number of time windows (#TWs), the expected number of unserved
customers (Cust.), the expected distances (Distance) and its percentage deviation (Dist%) compared
with the company’s approach corresponding to line "5 Days" (the company’s approach is to let the
customers choose the day they want over 5 days).

A special care must be taken when observing the results for two reasons. First, free time has a
strong impact on the quality of the service because of the high heterogeneity of the postal codes. It
can be noticed that some zones receive more free time when the size of time windows is of 3 hours
than when it is of 4 hours, but for some others the reverse is true. Secondly, optimizing a case
with several short time windows is significantly harder (requires higher computational time) than
with few large ones. Thus the comparison is not exactly fair and the results might be not perfectly
consistent.

Computational experiments provide some evident managerial insights. Table 13 indicates that,
on average, the company could reduce its traveled distances by using a few very large time windows.
The drivers would have to do a lower number of trips in the postal codes, and in turn this would
induce reduction in costs. Also, when time windows are large, there is more space to globally
optimize the routes. Controlling the delivery dates could also be an effective tool. Results show
that instead of offering any delivery date, the company could offer 4 days out of 5, and achieve in
this way a reduction of 1.8% and 1.7% in distances. Offering fewer days provides bigger reductions.
Gains are always obtained when using formula (23) for 3, 4 and 6 hours time windows. In these
cases, even an additional time window is beneficial.

Also, it is worth noticing that the offer of an additional time window does not behave linearly. In
all cases, moving from +0 to +1 increases the number of available time windows by 1 in almost all
postal codes. This increases the possible number of trips in each postal code, and as a consequence
this justifies the important increase in distances. In some other cases, moving from +k to +k + 1

has a marginal impact on distances because there is already a high number of time windows.
If the company wants to offer the choice of a delivery time and day at no additional cost, they

could offer 4h+2 time windows. In this setting, the customers of Edmonton would get 3.3=162/49
time windows per week on average, and those of Calgary would get 3.6=157/44 time windows. The
busiest postal codes get a time window for every day, whereas some other gets only one. The choice
of the setting remains a managerial decision because there is a trade-off between transportation costs
and customer satisfaction. A high number of short time windows is highly preferred by customers
than a lower number of large ones. However, transportation costs will be higher when there are
several short time windows. Also, more tests could be done on the offer of heterogeneous time
windows. For example, a region with few customers could have few larger time windows, whereas
busy postal codes could get several small ones.
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Edmonton (49 Postal Codes) Calgary (44 Postal Codes)
TW Size # TWs Cust. Distance Dist. % # TWs Cust. Distance Dist. %
3h 81 0.590 4172.6 -13.1% 81 0.048 4008.3 -10.7%
3h+1 129 0.642 4818.9 0.4% 125 0.050 4341.6 -3.2%
3h+2 175 0.503 5141.1 7.1% 166 0.040 4536.6 1.1%
3h+3 216 0.463 5169.8 7.7% 201 0.030 4645.2 3.5%
3h+4 245 0.433 5180.8 8.0% 220 0.022 4756.4 6.0%
4h 65 0.545 4379.8 -8.7% 69 0.035 3862.7 -13.9%
4h+1 114 0.742 4474.5 -6.8% 113 0.005 4246.5 -5.4%
4h+2 162 0.612 4759.8 -0.8% 157 0.062 4494.3 0.2%
4h+3 208 0.363 5067.8 5.6% 197 0.022 4624.2 3.1%
4h+4 245 0.350 5044.4 5.1% 220 0.013 4709.4 5.0%
6h 58 0.797 4218.1 -12.1% 53 0.098 3737.5 -16.7%
6h+1 107 0.537 4547.7 -5.2% 97 0.082 4137.6 -7.8%
6h+2 156 0.510 4866.6 1.4% 141 0.050 4400.6 -1.9%
6h+3 204 0.468 4908.7 2.3% 185 0.007 4560.0 1.6%
6h+4 245 0.313 4982.2 3.8% 220 0.013 4613.2 2.8%
1 Day 50 0.405 3848.4 -19.8% 44 0.075 3754.8 -16.3%
2 Days 99 0.595 4299.5 -10.4% 88 0.052 4093.6 -8.8%
3 Days 148 0.552 4620.8 -3.7% 132 0.093 4252.1 -5.2%
4 Days 197 0.415 4712.5 -1.8% 176 0.005 4410.4 -1.7%
5 Days 245 0.348 4798.9 0.0% 220 0.015 4486.9 0.0%
No TWs - 0.003 3654.0 -23.9% - 0.000 3602.5 -19.7%

Table 13: Results on the real-world instances
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7 Conclusions

In this paper, we analyze a variant of the Time Window Assignment Vehicle Routing Problem,
where customers are distributed into a grid of zones, their locations, demands and service times are
stochastic and evaluated through a set of possible scenarios based on historical data. The aim is
to build a schedule over a predefined time horizon that assigns to each zone a set of time windows
during a time horizon of a week , by minimizing the total expected transportation costs plus a
penalty cost for excluding some customers. We called this problem the Stochastic Multi-period
Time Window Assignment Vehicle Routing Problem.

Benchmark instances have been generated, with a different number of zones, customers and
scenarios to evaluate the effectiveness and the efficiency of the proposed solution approach. Results
are extremely promising: the method represents a valuable tool for the industrial case motivating
the study.
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